17 research outputs found

    Identification of a serum biomarker signature associated with metastatic prostate cancer

    Get PDF
    Purpose: Improved early diagnosis and determination of aggressiveness of prostate cancer (PC) is important to select suitable treatment options and to decrease over-treatment. The conventional marker is total prostate specific antigen (PSA) levels in blood, but lacks specificity and ability to accurately discriminate indolent from aggressive disease. Experimental design: In this study, we sought to identify a serum biomarker signature associated with metastatic PC. We measured 157 analytes in 363 serum samples from healthy subjects, patients with non-metastatic PC and patients with metastatic PC, using a recombinant antibody microarray. Results: A signature consisting of 69 proteins differentiating metastatic PC patients from healthy controls was identified. Conclusions and clinical relevance: The clinical value of this biomarker signature requires validation in larger independent patient cohorts before providing a new prospect for detection of metastatic PC

    An event-driven manufacturing information system architecture for Industry 4.0

    No full text
    Future manufacturing systems need to be more flexible, to embrace tougher and constantly changing market demands. They need to make better use of plant data, ideally utilising all data from the entire plant. Low-level data should be refined to real-time information for decision-making, to facilitate competitiveness through informed and timely decisions. The Line Information System Architecture (LISA), is presented in this paper. It is an event-driven architecture featuring loose coupling, a prototype-oriented information model and formalised transformation services. LISA is designed to enable flexible factory integration and data utilisation. The focus of LISA is on integration of devices and services on all levels, simplifying hardware changes and integration of new smart services as well as supporting continuous improvements on information visualisation and control. The architecture has been evaluated on both real industrial data and industrial demonstrators and it is also being installed at a large automotive company. This article is an extended and revised version of the paper presented at the 2015 IFAC Symposium on Information Control in Manufacturing (INCOM 2015). The paper has been restructured in regards to the order and title of the chapters, and additional information about the integration between devices and services aspects have been added. The introduction and the general structure of the paper now better highlight the contributions of the paper and the uniqueness of the framework

    Development of a Modeling Architecture Incorporating the Industry 4.0 View for a Company in the Gas Sector

    No full text
    Part 7: Cyber-Physical SystemsInternational audienceIndustry 4.0 is a fast growing concept which has started to gain ground over the last few years and strives to achieve a higher and more efficient production rate through the usage of automations. This concept is directly correlated with Business Process Management because its implementation concerns the improvement of business processes. Business Process Modeling is a tool of Business Process Management which can depict the processes of an organization in order to be elaborated and improved. For that reason models are widely used for the better understanding of processes and as a first step of new concepts insertion, such as Industry 4.0, in an organization. Hence, a comprehensive framework of a modeling architecture is essential for a company which desires the transition to new concepts according to its needs, its processes and its structure. In this paper, a complete architecture which proposed in a company activating in gas industry is presented including the appropriate models for the recording of business processes and how Industry 4.0 principles could be incorporated to them

    Shared Bimanual Tasks Elicit Bimanual Reflexes During Movement

    No full text
    Previous research has suggested distinct predictive and reactive control mechanisms for bimanual movements compared with unimanual motion. Recent studies have extended these findings by demonstrating that movement corrections during bimanual movements might differ depending on whether or not the task is shared between the arms. We hypothesized that corrective responses during shared bimanual tasks recruit bilateral rapid feedback mechanisms such as reflexes. We tested this hypothesis by perturbing one arm as subjects performed uni- and bimanual movements. Movements were made in a virtual-reality environment in which hand position was displayed as a cursor on a screen. During bimanual motion, we provided cursor feedback either independently for each arm (independent-cursor) or such that one cursor was placed at the average location between the arms (shared-cursor). On random trials, we applied a 40 N force pulse to the right arm 100 ms after movement onset. Our results show that while reflex responses were rapidly elicited in the perturbed arm, electromyographic activity remained close to baseline levels in the unperturbed arm during the independent-cursor trials. In contrast, when the cursor was shared between the arms, reflex responses were reduced in the perturbed arm and were rapidly elicited in the unperturbed arm. Our results thus suggest that when both arms contribute to achieving the task goal, reflex responses are bilaterally elicited in response to unilateral perturbations. These results agree with and extend recent suggestions that bimanual feedback control might be modified depending on task context

    A Dynamic Approach to Multi-stage Job Shop Scheduling in an Industry 4.0-Based Flexible Assembly System

    No full text
    Part 7: Operations Planning, Scheduling and ControlInternational audienceIndustry 4.0 technology is based on the concepts of flexibility and dynamic assembly system design. This enables new production strategies and creates new challenges for job shop scheduling. In particular, manufacturing processes for different customer orders may have individual machine structures whereas the flexible stations are able to execute different functions subject to individual sets of operations within the jobs. This study develops a control approach to job shop scheduling in a customized manufacturing process and job sequencing of operations within the jobs. The developed approach presents a contribution to flexible distributed scheduling in the emerging field of Industry 4.0-based innovative production systems
    corecore