370 research outputs found
Rocket Engine Plume Diagnostics at Stennis Space Center
The Stennis Space Center has been at the forefront of development and application of exhaust plume spectroscopy to rocket engine health monitoring since 1989. Various spectroscopic techniques, such as emission, absorption, FTIR, LIF, and CARS, have been considered for application at the engine test stands. By far the most successful technology h a been exhaust plume emission spectroscopy. In particular, its application to the Space Shuttle Main Engine (SSME) ground test health monitoring has been invaluable in various engine testing and development activities at SSC since 1989. On several occasions, plume diagnostic methods have successfully detected a problem with one or more components of an engine long before any other sensor indicated a problem. More often, they provide corroboration for a failure mode, if any occurred during an engine test. This paper gives a brief overview of our instrumentation and computational systems for rocket engine plume diagnostics at SSC. Some examples of successful application of exhaust plume spectroscopy (emission as well as absorption) to the SSME testing are presented. Our on-going plume diagnostics technology development projects and future requirements are discussed
Planning for Plume Diagnostics for Ground Testing of J-2X Engines at the SSC
John C. Stennis Space Center (SSC) is the premier test facility for liquid rocket engine development and certification for the National Aeronautics and Space Administration (NASA). Therefore, it is no surprise that the SSC will play the most prominent role in the engine development testing and certification for the J-2X engine. The Pratt & Whitney Rocketdyne J-2X engine has been selected by the Constellation Program to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage in NASA s strategy of risk mitigation for hardware development by building on the Apollo program and other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with first demonstration flight in 2010 and human test flights in 2012. Accordingly, J-2X engine design, development, test, and evaluation is to build upon heritage hardware and apply valuable experience gained from past development and testing efforts. In order to leverage SSC s successful and innovative expertise in the plume diagnostics for the space shuttle main engine (SSME) health monitoring,1-10 this paper will present a blueprint for plume diagnostics for various proposed ground testing activities for J-2X at SSC. Complete description of the SSC s test facilities, supporting infrastructure, and test facilities is available in Ref. 11. The A-1 Test Stand is currently being prepared for testing the J-2X engine at sea level conditions. The A-2 Test Stand is currently being used for testing the SSME and may also be used for testing the J-2X engine at sea level conditions in the future. Very recently, ground-breaking ceremony for the new A-3 rocket engine test stand took place at SSC on August 23, 2007. A-3 is the first large - scale test stand to be built at the SSC since the A and B stands were constructed in the 1960s. The A-3 Test Stand will be used for testing J-2X engines under vacuum conditions simulating high altitude operation at approximately 30,480 m (100,000 ft). To achieve the simulated altitude environment, chemical steam generators using isopropyl alcohol, LOX, and RELEASED - Printed documents may be obsolete; validate prior to use. water would run for the duration of the test and would generate approximately 2096 Kg/s of steam to reduce pressure in the test cell and downstream of the engine. The testing at the A-3 Test Stand is projected to begin in late 2010, meanwhile the J-2X component testing on A-1 is scheduled to begin later this year
Blocking Zika virus vertical transmission.
The outbreak of the Zika virus (ZIKV) has been associated with increased incidence of congenital malformations. Although recent efforts have focused on vaccine development, treatments for infected individuals are needed urgently. Sofosbuvir (SOF), an FDA-approved nucleotide analog inhibitor of the Hepatitis C (HCV) RNA-dependent RNA polymerase (RdRp) was recently shown to be protective against ZIKV both in vitro and in vivo. Here, we show that SOF protected human neural progenitor cells (NPC) and 3D neurospheres from ZIKV infection-mediated cell death and importantly restored the antiviral immune response in NPCs. In vivo, SOF treatment post-infection (p.i.) decreased viral burden in an immunodeficient mouse model. Finally, we show for the first time that acute SOF treatment of pregnant dams p.i. was well-tolerated and prevented vertical transmission of the virus to the fetus. Taken together, our data confirmed SOF-mediated sparing of human neural cell types from ZIKV-mediated cell death in vitro and reduced viral burden in vivo in animal models of chronic infection and vertical transmission, strengthening the growing body of evidence for SOF anti-ZIKV activity
Universal Ratios in the 2-D Tricritical Ising Model
We consider the universality class of the two-dimensional Tricritical Ising
Model. The scaling form of the free-energy naturally leads to the definition of
universal ratios of critical amplitudes which may have experimental relevance.
We compute these universal ratios by a combined use of results coming from
Perturbed Conformal Field Theory, Integrable Quantum Field Theory and numerical
methods.Comment: 4 pages, LATEX fil
A potential role for muscle in glucose homeostasis: in vivo kinetic studies in glycogen storage disease type 1a and fructose-1,6-bisphosphatase deficiency
A potential role for muscle in glucose homeostasis was recently suggested based on characterization of extrahepatic and extrarenal glucose-6-phosphatase (glucose-6-phosphatase-beta). To study the role of extrahepatic tissue in glucose homeostasis during fasting glucose kinetics were studied in two patients with a deficient hepatic and renal glycogenolysis and/or gluconeogenesis. Endogenous glucose production (EGP), glycogenolysis (GGL), and gluconeogenesis (GNG) were quantified with stable isotopes in a patient with glycogen storage disease type 1a (GSD-1a) and a patient with fructose-1,6-bisphosphatase (FBPase) deficiency. The [6,6-H-2(2)]glucose dilution method in combination with the deuterated water method was used during individualized fasting tests. Both patients became hypoglycemic after 2.5 and 14.5 h fasting, respectively. At that time, the patient with GSD-1a had EGP 3.84 mu mol/kg per min (30% of normal EGP after an overnight fast), GGL 3.09 mu mol/kg per min, and GNG 0.75 mu mol/kg per min. The patient with FBPase deficiency had EGP 8.53 mu mol/kg per min (62% of normal EGP after an overnight fast), GGL 6.89 mu mol/kg per min GGL, and GNG 1.64 mu mol/kg per min. EGP was severely hampered in both patients, resulting in hypoglycemia. However, despite defective hepatic and renal GNG in both disorders and defective hepatic GGL in GSD-1a, both patients were still able to produce glucose via both pathways. As all necessary enzymes of these pathways have now been functionally detected in muscle, a contribution of muscle to EGP during fasting via both GGL as well as GNG is suggeste
Photoaffinity labeling of the allosteric AMP site of biodegradative threonine dehydratase of Escherichia coli with 8-azido-AMP
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66394/1/j.1432-1033.1988.tb14407.x.pd
Hydrocarbon-Fueled Rocket Engine Plume Diagnostics: Analytical Developments and Experimental Results
A viewgraph presentation describing experimental results and analytical developments about plume diagnostics for hydrocarbon-fueled rocket engines is shown. The topics include: 1) SSC Plume Diagnostics Background; 2) Engine Health Monitoring Approach; 3) Rocket Plume Spectroscopy Simulation Code; 4) Spectral Simulation for 10 Atomic Species and for 11 Diatomic Molecular Electronic Bands; 5) "Best" Lines for Plume Diagnostics for Hydrocarbon-Fueled Rocket Engines; 6) Experimental Set Up for the Methane Thruster Test Program and Experimental Results; and 7) Summary and Recommendations
Hydrocarbon-Fueled Rocket Engine Plume Diagnostics: Analytical Developments & Experimental Results
No abstract availabl
Clinical Efficacy of Enzalutamide vs Bicalutamide Combined With Androgen Deprivation Therapy in Men With Metastatic Hormone-Sensitive Prostate Cancer: A Randomized Clinical Trial
Importance: Black patients have been underrepresented in prospective clinical trials of advanced prostate cancer. This study evaluated the efficacy of enzalutamide compared with bicalutamide, with planned subset analysis of Black patients with metastatic hormone-sensitive prostate cancer (mHSPC), which is a disease state responsive to androgen deprivation therapy (ADT).
Objective: To compare the efficacy of enzalutamide vs bicalutamide in combination with ADT in men with mHSPC, with a subset analysis of Black patients.
Design, Setting, and Participants: In this randomized clinical trial, a phase 2 screening design enabled a nondefinitive comparison of the primary outcome by treatment. Patients were stratified by race (Black or other) and bone pain (present or absent). Accrual of at least 30% Black patients was required. This multicenter trial was conducted at 4 centers in the US. Men with mHSPC with no history of seizures and adequate marrow, renal, and liver function were eligible. Data analysis was performed from February 2019 to March 2020.
Interventions: Participants were randomized 1:1 to receive oral enzalutamide (160 mg daily) or bicalutamide (50 mg daily) in addition to ADT.
Main Outcomes and Measures: The primary end point was the 7-month prostate-specific antigen (PSA) response (SMPR) rate, a previously accepted surrogate for overall survival (OS) outcome. Secondary end points included adverse reactions, time to PSA progression, and OS.
Results: A total of 71 men (median [range] age, 65 [51-86] years) were enrolled; 29 (41%) were Black, 41 (58%) were White, and 1 (1%) was Asian. Thirty-six patients were randomized to receive enzalutamide, and 35 were randomized to receive bicalutamide. Twenty-six patients (37%) had bone pain and 37 patients (52%) had extensive disease. SMPR was achieved in 30 of 32 patients (94%; 95% CI, 80%-98%) taking enzalutamide and 17 of 26 patients (65%; 95% CI, 46%-81%) taking bicalutamide (P = .008) (difference, 29%; 95% CI, 5%-50%). Among Black patients, the SMPR was 93% (95% CI, 69%-99%) among those taking enzalutamide and 42% (95% CI, 19%-68%) among those taking bicalutamide (P = .009); among non-Black patients, the SMPR was 94% (95% CI, 74%-99%) among those taking enzalutamide and 86% (95% CI, 60%-96%) among those taking bicalutamide. The 12-month PSA response rates were 84% with enzalutamide and 34% with bicalutamide.
Conclusions and Relevance: The findings of this randomized clinical trial comparing enzalutamide with bicalutamide suggest that enzalutamide is associated with improved outcomes compared with bicalutamide, in terms of the rate and duration of PSA response, in Black patients with mHSPC.
Trial Registration: ClinicalTrials.gov Identifier: NCT02058706
Temperature influence on DXA measurements: bone mineral density acquisition in frozen and thawed human femora
<p>Abstract</p> <p>Background</p> <p>Determining bone mineral density (BMD) with dual-energy x-ray absorptiometry (DXA) is an established and widely used method that is also applied prior to biomechanical testing. However, DXA is affected by a number of factors. In order to delay decompositional processes, human specimens for biomechanical studies are usually stored at about -20°C; similarly, bone mineral density measurements are usually performed in the frozen state. The aim of our study was to investigate the influence of bone temperature on the measured bone mineral density.</p> <p>Methods</p> <p>Using DXA, bone mineral density measurements were taken in 19 fresh-frozen human femora, in the frozen and the thawed state. Water was used to mimic the missing soft tissue around the specimens. Measurements were taken with the specimens in standardized internal rotation. Total-BMD and single-BMD values of different regions of interest were used for evaluation.</p> <p>Results</p> <p>Fourteen of the 19 specimens showed a decrease in BMD after thawing. The measured total-BMD of the frozen specimens was significantly (1.4%) higher than the measured BMD of the thawed specimens.</p> <p>Conclusion</p> <p>Based on our findings we recommend that the measurement of bone density, for example prior to biomechanical testing, should be standardized to thawed or frozen specimens. Temperature should not be changed during measurements. When using score systems for data interpretation (e.g. T- or Z-score), BMD measurements should be performed only on thawed specimens.</p
- …
