92 research outputs found

    Evolutionary Trends in the Physciaceae

    Get PDF
    The current delimitation of the family Physciaceae has been generally accepted since detailed descriptions of ascus characters allowed for a more natural circumscription of lichenized ascomycetes. The generic relations within the family are, however, still controversial and depend on the importance different authors attribute to specific morphological or chemical characteristics. The aim of this paper is to describe ascospore ontogeny and to test the present taxonomic structure of the family against a parsimony-based cladistic analysis, which includes three different scenarios of a priori character weighting. A study of ascospore ontogeny revealed two distinct developmental lines. One line revealed a delayed septum formation, which clearly showed transitions from spores with apical and median thickenings to spores without apical, but still well developed median thickenings, and to spores without any thickenings. In the second developmental line with an early septum formation again taxa with no thickenings, median thickenings, and both median and apical thickenings were found. Although these characters were constant at a species level, median wall thickenings especially varied among otherwise closely related taxa. In the cladistic analyses the current taxonomic structure of the Physciaceae was only obtained after the five character groups, namely morphology and anatomy of the vegetative thallus, conidiomata and conidia, morphology and anatomy of the apothecia, ontogeny of the ascospores, and secondary metabolites of the thallus, were given equal importance, and after a subjective a priori weighting further increased the weight of the three characters ‘conidial shape', ‘presence of apical thickenings', and ‘spore septation delayed'. This structure was not supported by a cladistic analysis with equally weighted characters but reflected the biased character weighting of the present day Physdaceae taxonomy. The taxonomic importance of conidial characters and of anatomical and ontogenetical spore characteristics need, therefore, a careful reconsideration in futur

    Combining Substrate Specificity Analysis with Support Vector Classifiers Reveals Feruloyl Esterase as a Phylogenetically Informative Protein Group

    Get PDF
    Our understanding of how fungi evolved to develop a variety of ecological niches, is limited but of fundamental biological importance. Specifically, the evolution of enzymes affects how well species can adapt to new environmental conditions. Feruloyl esterases (FAEs) are enzymes able to hydrolyze the ester bonds linking ferulic acid to plant cell wall polysaccharides. The diversity of substrate specificities found in the FAE family shows that this family is old enough to have experienced the emergence and loss of many activities. In this study we evaluate the relative activity of FAEs against a variety of model substrates as a novel predictive tool for Ascomycota taxonomic classification. Our approach consists of two analytical steps; (1) an initial unsupervised analysis to cluster the FAEs substrate specificity data which were generated by cultivation of 34 Ascomycota strains and then an analysis of the produced enzyme cocktail against 10 substituted cinnamate and phenylalkanoate methyl esters, (2) a second, supervised analysis for training a predictor built on these substrate activities. By applying both linear and non-linear models we were able to correctly predict the taxonomic Class (∼86% correct classification), Order (∼88% correct classification) and Family (∼88% correct classification) that the 34 Ascomycota belong to, using the activity profiles of the FAEs. The good correlation with the FAEs substrate specificities that we have defined via our phylogenetic analysis not only suggests that FAEs are phylogenetically informative proteins but it is also a considerable step towards improved FAEs functional prediction.published_or_final_versio

    Large-Scale Phylogenetic Analysis of Emerging Infectious Diseases

    Get PDF
    Microorganisms that cause infectious diseases present critical issues of national security, public health, and economic welfare.  For example, in recent years, highly pathogenic strains of avian influenza have emerged in Asia, spread through Eastern Europe and threaten to become pandemic. As demonstrated by the coordinated response to Severe Acute Respiratory Syndrome (SARS) and influenza, agents of infectious disease are being addressed via large-scale genomic sequencing.  The goal of genomic sequencing projects are to rapidly put large amounts of data in the public domain to accelerate research on disease surveillance, treatment, and prevention. However, our ability to derive information from large comparative genomic datasets lags far behind acquisition.  Here we review the computational challenges of comparative genomic analyses, specifically sequence alignment and reconstruction of phylogenetic trees.  We present novel analytical results on from two important infectious diseases, Severe Acute Respiratory Syndrome (SARS) and influenza.SARS and influenza have similarities and important differences both as biological and comparative genomic analysis problems.  Influenza viruses (Orthymxyoviridae) are RNA based.  Current evidence indicates that influenza viruses originate in aquatic birds from wild populations. Influenza has been studied for decades via well-coordinated international efforts.  These efforts center on surveillance via antibody characterization of the hemagglutinin (HA) and neuraminidase (N) proteins of the circulating strains to inform vaccine design. However we still do not have a clear understanding of: 1) various transmission pathways such as the role of intermediate hosts such as swine and domestic birds and 2) the key mutation and genomic recombination events that underlie periodic pandemics of influenza.  In the past 30 years, sequence data from HA and N loci has become an important data type. In the past year, full genomic data has become prominent.  These data present exciting opportunities to address unanswered questions in influenza pandemics.SARS is caused by a previously unrecognized lineage of coronavirus, SARS-CoV, which like influenza has an RNA based genome.  Although SARS-CoV is widely believed to have originated in animals there remains disagreement over the candidate animal source that lead to the original outbreak of SARS.  In contrast to the long history of the study of influenza, SARS was only recognized in late 2002 and the virus that causes SARS has been documented primarily by genomic sequencing.In the past, most studies of influenza were performed on a limited number of isolates and genes suited to a particular problem.  Major goals in science today are to understand emerging diseases in broad geographic, environmental, societal, biological, and genomic contexts. Synthesizing diverse information brought together by various researchers is important to find out what can be done to prevent future outbreaks {JON03}.  Thus comprehensive means to organize and analyze large amounts of diverse information are critical.  For example, the relationships of isolates and patterns of genomic change observed in large datasets might not be consistent with hypotheses formed on partial data.  Moreover when researchers rely on partial datasets, they restrict the range of possible discoveries.Phylogenetics is well suited to the complex task of understanding emerging infectious disease. Phylogenetic analyses can test many hypotheses by comparing diverse isolates collected from various hosts, environments, and points in time and organizing these data into various evolutionary scenarios.  The products of a phylogenetic analysis are a graphical tree of ancestor-descendent relationships and an inferred summary of mutations, recombination events, host shifts, geographic, and temporal spread of the viruses.  However, this synthesis comes at a price.  The cost of computation of phylogenetic analysis expands combinatorially as the number of isolates considered increases. Thus, large datasets like those currently produced are commonly considered intractable.  We address this problem with synergistic development of heuristics tree search strategies and parallel computing.Fil: Janies, D.. Ohio State University; Estados UnidosFil: Pol, Diego. Ohio State University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    A comparison of the physiology, anatomy and ribosomal DNA in alpine and subalpine populations of the lichen Nephroma arcticum- the effects of an eight-year transplant experiment

    No full text
    Thalli of Nephroma arcticum were transplanted between and within a high-elevation alpine heath (1100 m) and a low-elevation subalpine mountain birch forest (380 m) in northern Swedish Lapland and harvested after eight years. Statistically significant differences (P < 0.05) were found between control samples for dark respiration rates, photon use efficiencies (apparent quantum yields) and light compensation points (all were higher in the high-altitude population). The following traits were significantly affected by transplanting: (1) epicortex thickness, (2) upper cortex thickness in the low-altitude population, (3) maximum photosynthetic rates, (4) dark respiration rates and (5) light compensation point. Of these malleable traits, all reduce the differences between the controls although there seems to be over-compensation in maximum net photosynthesis and under-compensation in dark respiration rate of the low-altitude population. Conservative traits, i.e., those that did not change significantly with transplantation were: (1) thallus thickness, (2) algal layer thickness, (3) algal cell diameter and (4) light saturation level. Small, yet significant differences in anatomy and physiology suggest that an ecotypic differentiation was established although the two internal transcribed DNA spacers ITS 1 and ITS 2 showed no corresponding variation between the populations
    • …
    corecore