340 research outputs found

    Prediction of adverse perinatal outcome by fetal biometry: comparison of customized and populationâ based standards

    Full text link
    ObjectiveTo compare the predictive performance of estimated fetal weight (EFW) percentiles, according to eight growth standards, to detect fetuses at risk for adverse perinatal outcome.MethodsThis was a retrospective cohort study of 3437 Africanâ American women. Populationâ based (Hadlock, INTERGROWTHâ 21st, World Health Organization (WHO), Fetal Medicine Foundation (FMF)), ethnicityâ specific (Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)), customized (Gestationâ Related Optimal Weight (GROW)) and Africanâ American customized (Perinatology Research Branch (PRB)/NICHD) growth standards were used to calculate EFW percentiles from the last available scan prior to delivery. Prediction performance indices and relative risk (RR) were calculated for EFW â 90th percentiles, according to each standard, for individual and composite adverse perinatal outcomes. Sensitivity at a fixed (10%) falseâ positive rate (FPR) and partial (FPR â 90th percentile were also at risk for any adverse perinatal outcome according to the INTERGROWTHâ 21st (RRâ =â 1.4; 95%â CI, 1.0â 1.9) and Hadlock (RRâ =â 1.7; 95%â CI, 1.1â 2.6) standards, many times fewer cases (2â 5â fold lower sensitivity) were detected by using EFW >â 90th percentile, rather than EFW â 90th percentile were at increased risk of adverse perinatal outcomes according to all or some of the eight growth standards, respectively. The RR of a composite adverse perinatal outcome in pregnancies with EFW <â 10th percentile was higher for the mostâ stringent (NICHD) compared with the leastâ stringent (FMF) standard. The results of the complementary analysis of AUC suggest slightly improved detection of adverse perinatal outcome by more recent populationâ based (INTERGROWTHâ 21st) and customized (PRB/NICHD) standards compared with the Hadlock and FMF standards. Published 2019. This article is a U.S. Government work and is in the public domain in the USA.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153734/1/uog20299.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153734/2/uog20299_am.pd

    Rhythmic dynamics and synchronization via dimensionality reduction : application to human gait

    Get PDF
    Reliable characterization of locomotor dynamics of human walking is vital to understanding the neuromuscular control of human locomotion and disease diagnosis. However, the inherent oscillation and ubiquity of noise in such non-strictly periodic signals pose great challenges to current methodologies. To this end, we exploit the state-of-the-art technology in pattern recognition and, specifically, dimensionality reduction techniques, and propose to reconstruct and characterize the dynamics accurately on the cycle scale of the signal. This is achieved by deriving a low-dimensional representation of the cycles through global optimization, which effectively preserves the topology of the cycles that are embedded in a high-dimensional Euclidian space. Our approach demonstrates a clear advantage in capturing the intrinsic dynamics and probing the subtle synchronization patterns from uni/bivariate oscillatory signals over traditional methods. Application to human gait data for healthy subjects and diabetics reveals a significant difference in the dynamics of ankle movements and ankle-knee coordination, but not in knee movements. These results indicate that the impaired sensory feedback from the feet due to diabetes does not influence the knee movement in general, and that normal human walking is not critically dependent on the feedback from the peripheral nervous system

    The PathOlogist: an automated tool for pathway-centric analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The PathOlogist is a new tool designed to transform large sets of gene expression data into quantitative descriptors of pathway-level behavior. The tool aims to provide a robust alternative to the search for single-gene-to-phenotype associations by accounting for the complexity of molecular interactions.</p> <p>Results</p> <p>Molecular abundance data is used to calculate two metrics - 'activity' and 'consistency' - for each pathway in a set of more than 500 canonical molecular pathways (source: Pathway Interaction Database, <url>http://pid.nci.nih.gov</url>). The tool then allows a detailed exploration of these metrics through integrated visualization of pathway components and structure, hierarchical clustering of pathways and samples, and statistical analyses designed to detect associations between pathway behavior and clinical features.</p> <p>Conclusions</p> <p>The PathOlogist provides a straightforward means to identify the functional processes, rather than individual molecules, that are altered in disease. The statistical power and biologic significance of this approach are made easily accessible to laboratory researchers and informatics analysts alike. Here we show as an example, how the PathOlogist can be used to establish pathway signatures that robustly differentiate breast cancer cell lines based on response to treatment.</p

    Using ILP to Identify Pathway Activation Patterns in Systems Biology

    Get PDF
    We show a logical aggregation method that, combined with propositionalization methods, can construct novel structured biological features from gene expression data. We do this to gain understanding of pathway mechanisms, for instance, those associated with a particular disease. We illustrate this method on the task of distinguishing between two types of lung cancer; Squamous Cell Carcinoma (SCC) and Adenocarcinoma (AC). We identify pathway activation patterns in pathways previously implicated in the development of cancers. Our method identified a model with comparable predictive performance to the winning algorithm of a recent challenge, while providing biologically relevant explanations that may be useful to a biologist

    Mining Biological Pathways Using WikiPathways Web Services

    Get PDF
    WikiPathways is a platform for creating, updating, and sharing biological pathways [1]. Pathways can be edited and downloaded using the wiki-style website. Here we present a SOAP web service that provides programmatic access to WikiPathways that is complementary to the website. We describe the functionality that this web service offers and discuss several use cases in detail. Exposing WikiPathways through a web service opens up new ways of utilizing pathway information and assisting the community curation process

    Nano Random Forests to mine protein complexes and their relationships in quantitative proteomics data

    Get PDF
    Ever-increasing numbers of quantitative proteomics data sets constitute an underexploited resource for investigating protein function. Multiprotein complexes often follow consistent trends in these experiments, which could provide insights about their biology. Yet, as more experiments are considered, a complex’s signature may become conditional and less identifiable. Previously we successfully distinguished the general proteomic signature of genuine chromosomal proteins from hitchhikers using the Random Forests (RF) machine learning algorithm. Here we test whether small protein complexes can define distinguishable signatures of their own, despite the assumption that machine learning needs large training sets. We show, with simulated and real proteomics data, that RF can detect small protein complexes and relationships between them. We identify several complexes in quantitative proteomics results of wild-type and knockout mitotic chromosomes. Other proteins covary strongly with these complexes, suggesting novel functional links for later study. Integrating the RF analysis for several complexes reveals known interdependences among kinetochore subunits and a novel dependence between the inner kinetochore and condensin. Ribosomal proteins, although identified, remained independent of kinetochore subcomplexes. Together these results show that this complex-oriented RF (NanoRF) approach can integrate proteomics data to uncover subtle protein relationships. Our NanoRF pipeline is available online

    Knowledge-based matrix factorization temporally resolves the cellular responses to IL-6 stimulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>External stimulations of cells by hormones, cytokines or growth factors activate signal transduction pathways that subsequently induce a re-arrangement of cellular gene expression. The analysis of such changes is complicated, as they consist of multi-layered temporal responses. While classical analyses based on clustering or gene set enrichment only partly reveal this information, matrix factorization techniques are well suited for a detailed temporal analysis. In signal processing, factorization techniques incorporating data properties like spatial and temporal correlation structure have shown to be robust and computationally efficient. However, such correlation-based methods have so far not be applied in bioinformatics, because large scale biological data rarely imply a natural order that allows the definition of a delayed correlation function.</p> <p>Results</p> <p>We therefore develop the concept of graph-decorrelation. We encode prior knowledge like transcriptional regulation, protein interactions or metabolic pathways in a weighted directed graph. By linking features along this underlying graph, we introduce a partial ordering of the features (e.g. genes) and are thus able to define a graph-delayed correlation function. Using this framework as constraint to the matrix factorization task allows us to set up the fast and robust graph-decorrelation algorithm (GraDe). To analyze alterations in the gene response in <it>IL-6 </it>stimulated primary mouse hepatocytes, we performed a time-course microarray experiment and applied GraDe. In contrast to standard techniques, the extracted time-resolved gene expression profiles showed that <it>IL-6 </it>activates genes involved in cell cycle progression and cell division. Genes linked to metabolic and apoptotic processes are down-regulated indicating that <it>IL-6 </it>mediated priming renders hepatocytes more responsive towards cell proliferation and reduces expenditures for the energy metabolism.</p> <p>Conclusions</p> <p>GraDe provides a novel framework for the decomposition of large-scale 'omics' data. We were able to show that including prior knowledge into the separation task leads to a much more structured and detailed separation of the time-dependent responses upon <it>IL-6 </it>stimulation compared to standard methods. A Matlab implementation of the GraDe algorithm is freely available at <url>http://cmb.helmholtz-muenchen.de/grade</url>.</p

    Global modeling of transcriptional responses in interaction networks

    Full text link
    Motivation: Cell-biological processes are regulated through a complex network of interactions between genes and their products. The processes, their activating conditions, and the associated transcriptional responses are often unknown. Organism-wide modeling of network activation can reveal unique and shared mechanisms between physiological conditions, and potentially as yet unknown processes. We introduce a novel approach for organism-wide discovery and analysis of transcriptional responses in interaction networks. The method searches for local, connected regions in a network that exhibit coordinated transcriptional response in a subset of conditions. Known interactions between genes are used to limit the search space and to guide the analysis. Validation on a human pathway network reveals physiologically coherent responses, functional relatedness between physiological conditions, and coordinated, context-specific regulation of the genes. Availability: Implementation is freely available in R and Matlab at http://netpro.r-forge.r-project.orgComment: 19 pages, 13 figure
    corecore