15 research outputs found

    In Vitro Primary-Indirect Genotoxicity in Bronchial Epithelial Cells Promoted by Industrially Relevant Few-Layer Graphene

    Get PDF
    Few-layer graphene (FLG) has garnered much interest owing to applications in hydrogen storage and reinforced nanocomposites. Consequently, these engineered nanomaterials (ENMs) are in high demand, increasing occupational exposure. This investigation seeks to assess the inhalation hazard of industrially relevant FLG engineered with: (i) no surface functional groups (neutral), (ii) amine, and (iii) carboxyl group functionalization. A monoculture of human lung epithelial (16HBE14o-) cells is exposed to each material for 24-h, followed by cytotoxicity and genotoxicity evaluation using relative population doubling (RPD) and the cytokinesis-blocked micronucleus (CBMN) assay, respectively. Neutral-FLG induces the greatest (two-fold) significant increase (p 1 µm diameter). The findings of the present study have demonstrated the capability of neutral-FLG and amine-FLG to induce genotoxicity in 16HBE14o- cells through primary indirect mechanisms, suggesting a possible role for carboxyl groups in scavenging radicals produced via oxidative stress

    Few-layer graphene induces both primary and secondary genotoxicity in epithelial barrier models in vitro

    Get PDF
    Background Toxicological evaluation of engineered nanomaterials (ENMs) is essential for occupational health and safety, particularly where bulk manufactured ENMs such as few-layer graphene (FLG) are concerned. Additionally, there is a necessity to develop advanced in vitro models when testing ENMs to provide a physiologically relevant alternative to invasive animal experimentation. The aim of this study was to determine the genotoxicity of non-functionalised (neutral), amine- and carboxyl-functionalised FLG upon both human-transformed type-I (TT1) alveolar epithelial cell monocultures, as well as co-cultures of TT1 and differentiated THP-1 monocytes (d.THP-1 (macrophages)). Results In monocultures, TT1 and d.THP-1 macrophages showed a statistically significant (p < 0.05) cytotoxic response with each ENM following 24-h exposures. Monoculture genotoxicity measured by the in vitro cytokinesis blocked micronucleus (CBMN) assay revealed significant (p < 0.05) micronuclei induction at 8 µg/ml for amine- and carboxyl-FLG. Transmission electron microscopy (TEM) revealed ENMs were internalised by TT1 cells within membrane-bound vesicles. In the co-cultures, ENMs induced genotoxicity in the absence of cytotoxic effects. Co-cultures pre-exposed to 1.5 mM N-acetylcysteine (NAC), showed baseline levels of micronuclei induction, indicating that the genotoxicity observed was driven by oxidative stress. Conclusions Therefore, FLG genotoxicity when examined in monocultures, results in primary-indirect DNA damage; whereas co-cultured cells reveal secondary mechanisms of DNA damage

    Microwave-assisted synthesis of layered basic zinc acetate nanosheets and their thermal decomposition into nanocrystalline ZnO

    Get PDF
    We have developed a low-cost technique using a conventional microwave oven to grow layered basic zinc acetate (LBZA) nanosheets (NSs) from a zinc acetate, zinc nitrate and HMTA solution in only 2 min. The as-grown crystals and their pyrolytic decomposition into ZnO nanocrystalline NSs are characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), X-ray diffraction (XRD) and photoluminescence (PL). SEM and AFM measurements show that the LBZA NSs have typical lateral dimensions of 1 to 5 μm and thickness of 20 to 100 nm. Annealing in air from 200°C to 1,000°C results in the formation of ZnO nanocrystalline NSs, with a nanocrystallite size ranging from 16 nm at 200°C to 104 nm at 1,000°C, as determined by SEM. SEM shows evidence of sintering at 600°C. PL shows that the shape of the visible band is greatly affected by the annealing temperature and that the exciton band to defect band intensity ratio is maximum at 400°C and decreases by a factor of 15 after annealing at 600°C. The shape and thickness of the ZnO nanocrystalline NSs are the same as LBZA NSs. This structure provides a high surface-to-volume ratio of interconnected nanoparticles that is favorable for applications requiring high specific area and low resistivity such as gas sensing and dye-sensitized solar cells (DSCs). We show that resistive gas sensors fabricated with the ZnO NSs showed a response of 1.12 and 1.65 to 12.5 ppm and 200 ppm of CO at 350°C in dry air, respectively, and that DSCs also fabricated from the material had an overall efficiency of 1.3%

    Effects of Vacuum Annealing on the Conduction Characteristics of ZnO Nanosheets

    Get PDF
    This paper is open acess and available in full at http://www.nanoscalereslett.com/content/10/1/368 .ZnO nanosheets are a relatively new form of nanostructure and have demonstrated potential as gas-sensing devices and dye sensitised solar cells. For integration into other devices, and when used as gas sensors, the nanosheets are often heated. Here we study the effect of vacuum annealing on the electrical transport properties of ZnO nanosheets in order to understand the role of heating in device fabrication. A low cost, mass production method has been used for synthesis and characterisation is achieved using scanning electron microscopy (SEM), photoluminescence (PL), auger electron spectroscopy (AES) and nanoscale two-point probe. Before annealing, the measured nanosheet resistance displayed a non-linear increase with probe separation, attributed to surface contamination. Annealing to 300 °C removed this contamination giving a resistance drop, linear probe spacing dependence, increased grain size and a reduction in the number of n-type defects. Further annealing to 500 °C caused the n-type defect concentration to reduce further with a corresponding increase in nanosheet resistance not compensated by any further sintering. At 700 °C, the nanosheets partially disintegrated and the resistance increased and became less linear with probe separation. These effects need to be taken into account when using ZnO nanosheets in devices that require an annealing stage during fabrication or heating during use
    corecore