240 research outputs found

    Exploiting disorder for perfect focusing

    Full text link
    We demonstrate experimentally that disordered scattering can be used to improve, rather than deteriorate, the focusing resolution of a lens. By using wavefront shaping to compensate for scattering, light was focused to a spot as small as one tenth of the diffraction limit of the lens. We show both experimentally and theoretically that it is the scattering medium, rather than the lens, that determines the width of the focus. Despite the disordered propagation of the light, the profile of the focus was always exactly equal to the theoretical best focus that we derived.Comment: 4 pages, 4 figure

    Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging

    Get PDF
    The assessment of disrupted myocardial fiber arrangement may help to understand and diagnose hypertrophic or ischemic cardiomyopathy. We hereby proposed and developed shear wave imaging (SWI), which is an echocardiography-based, noninvasive, real-time, and easy-to-use technique, to map myofiber orientation. Five in vitro porcine and three in vivo open-chest ovine hearts were studied. Known in physics, shear wave propagates faster along than across the fiber direction. SWI is a technique that can generate shear waves travelling in different directions with respect to each myocardial layer. SWI further analyzed the shear wave velocity across the entire left-ventricular (LV) myocardial thickness, ranging between 10 (diastole) and 25 mm (systole), with a resolution of 0.2 mm in the middle segment of the LV anterior wall region. The fiber angle at each myocardial layer was thus estimated by finding the maximum shear wave speed. In the in vitro porcine myocardium (n=5), the SWI-estimated fiber angles gradually changed from +80° ± 7° (endocardium) to +30° ± 13° (midwall) and-40° ± 10° (epicardium) with 0° aligning with the circumference of the heart. This transmural fiber orientation was well correlated with histology findings (r2=0.91± 0.02, p<0.0001). SWI further succeeded in mapping the transmural fiber orientation in three beating ovine hearts in vivo. At midsystole, the average fiber orientation exhibited 71° ± 13° (endocardium), 27° ± 8° (midwall), and-26° ± 30° (epicardium). We demonstrated the capability of SWI in mapping myocardial fiber orientation in vitro and in vivo. SWI may serve as a new tool for the noninvasive characterization of myocardial fiber structure. © 2012 IEEE.published_or_final_versio

    Single Trial Decoding of Movement Intentions Using Functional Ultrasound Neuroimaging

    Get PDF
    Brain-machine interfaces (BMI) are powerful devices for restoring function to people living with paralysis. Leveraging significant advances in neurorecording technology, computational power, and understanding of the underlying neural signals, BMI have enabled severely paralyzed patients to control external devices, such as computers and robotic limbs. However, high-performance BMI currently require highly invasive recording techniques, and are thus only available to niche populations. Here, we show that a minimally invasive neuroimaging approach based on functional ultrasound (fUS) imaging can be used to detect and decode movement intention signals usable for BMI. We trained non-human primates to perform memory-guided movements while using epidural fUS imaging to record changes in cerebral blood volume from the posterior parietal cortex, a brain area important for spatial perception, multisensory integration, and movement planning. Using hemodynamic signals acquired during movement planning, we classified left-cued vs. right-cued movements, establishing the feasibility of ultrasonic BMI. These results demonstrate the ability of fUS-based neural interfaces to take advantage of the excellent spatiotemporal resolution, sensitivity, and field of view of ultrasound without breaching the dura or physically penetrating brain tissue

    A Universal Model of Global Civil Unrest

    Get PDF
    Civil unrest is a powerful form of collective human dynamics, which has led to major transitions of societies in modern history. The study of collective human dynamics, including collective aggression, has been the focus of much discussion in the context of modeling and identification of universal patterns of behavior. In contrast, the possibility that civil unrest activities, across countries and over long time periods, are governed by universal mechanisms has not been explored. Here, we analyze records of civil unrest of 170 countries during the period 1919-2008. We demonstrate that the distributions of the number of unrest events per year are robustly reproduced by a nonlinear, spatially extended dynamical model, which reflects the spread of civil disorder between geographic regions connected through social and communication networks. The results also expose the similarity between global social instability and the dynamics of natural hazards and epidemics.Comment: 8 pages, 3 figure

    Understanding Design Patterns Density with Aspects: A Case Study in JHotDraw using AspectJ

    Get PDF
    International audienceDesign patterns offer solutions to common engineering prob- lems in programs [1]. In particular, they shape the evolution of program elements. However, their implementations tend to vanish in the code: thus it is hard to spot them and to understand their impact. The prob- lem becomes even more difficult with a "high density of pattern": then the program becomes easy to evolve in the direction allowed by patterns but hard to change [2]. Aspect languages offer new means to modular- ize elements. Implementations of object-oriented design patterns with AspectJ have been proposed [3]. We aim at testing the scalability of such solutions in the JHotDraw framework. We first explore the impact of density on pattern implementation. We show how AspectJ helps to reduce this impact. This unveils the principles of aspects and AspectJ to control pattern density
    • …
    corecore