15 research outputs found

    Hydrogen Sulfide and Neurogenic Inflammation in Polymicrobial Sepsis: Involvement of Substance P and ERK-NF-κB Signaling

    Get PDF
    Hydrogen sulfide (H2S) has been shown to induce transient receptor potential vanilloid 1 (TRPV1)-mediated neurogenic inflammation in polymicrobial sepsis. However, endogenous neural factors that modulate this event and the molecular mechanism by which this occurs remain unclear. Therefore, this study tested the hypothesis that whether substance P (SP) is one important neural element that implicates in H2S-induced neurogenic inflammation in sepsis in a TRPV1-dependent manner, and if so, whether H2S regulates this response through activation of the extracellular signal-regulated kinase-nuclear factor-κB (ERK-NF-κB) pathway. Male Swiss mice were subjected to cecal ligation and puncture (CLP)-induced sepsis and treated with TRPV1 antagonist capsazepine 30 minutes before CLP. DL-propargylglycine (PAG), an inhibitor of H2S formation, was administrated 1 hour before or 1 hour after sepsis, whereas sodium hydrosulfide (NaHS), an H2S donor, was given at the same time as CLP. Capsazepine significantly attenuated H2S-induced SP production, inflammatory cytokines, chemokines, and adhesion molecules levels, and protected against lung and liver dysfunction in sepsis. In the absence of H2S, capsazepine caused no significant changes to the PAG-mediated attenuation of lung and plasma SP levels, sepsis-associated systemic inflammatory response and multiple organ dysfunction. In addition, capsazepine greatly inhibited phosphorylation of ERK1/2 and inhibitory κBα, concurrent with suppression of NF-κB activation even in the presence of NaHS. Furthermore, capsazepine had no effect on PAG-mediated abrogation of these levels in sepsis. Taken together, the present findings show that H2S regulates TRPV1-mediated neurogenic inflammation in polymicrobial sepsis through enhancement of SP production and activation of the ERK-NF-κB pathway

    Mitochondrial dysfunction and biogenesis: do ICU patients die from mitochondrial failure?

    Get PDF
    Mitochondrial functions include production of energy, activation of programmed cell death, and a number of cell specific tasks, e.g., cell signaling, control of Ca2+ metabolism, and synthesis of a number of important biomolecules. As proper mitochondrial function is critical for normal performance and survival of cells, mitochondrial dysfunction often leads to pathological conditions resulting in various human diseases. Recently mitochondrial dysfunction has been linked to multiple organ failure (MOF) often leading to the death of critical care patients. However, there are two main reasons why this insight did not generate an adequate resonance in clinical settings. First, most data regarding mitochondrial dysfunction in organs susceptible to failure in critical care diseases (liver, kidney, heart, lung, intestine, brain) were collected using animal models. Second, there is no clear therapeutic strategy how acquired mitochondrial dysfunction can be improved. Only the benefit of such therapies will confirm the critical role of mitochondrial dysfunction in clinical settings. Here we summarized data on mitochondrial dysfunction obtained in diverse experimental systems, which are related to conditions seen in intensive care unit (ICU) patients. Particular attention is given to mechanisms that cause cell death and organ dysfunction and to prospective therapeutic strategies, directed to recover mitochondrial function. Collectively the data discussed in this review suggest that appropriate diagnosis and specific treatment of mitochondrial dysfunction in ICU patients may significantly improve the clinical outcome

    Substance P in Polymicrobial Sepsis: Molecular Fingerprint of Lung Injury in Preprotachykinin-A−/− Mice

    No full text
    Deletion of mouse preprotachykinin-A (PPTA), which encodes mainly for neuropeptide substance P, has been shown to protect against lung injury and mortality in sepsis. This study explored microarray-based differential gene expression profiles in mouse lung tissue 8 h after inducing microbial sepsis and the effect of PPTA gene deletion. A range of genes differentially expressed (more than two-fold) in microarray analysis was assessed, comparing wild-type and PPTA-knockout septic mice with their respective sham controls, and the data were further validated. Genetic deletion of substance P resulted in a significantly different expression profile of genes involved in inflammation and immunomodulation after the induction of sepsis, compared with wild-type mice. Interestingly, apart from the various proinflammatory mediators, the antiinflammatory cytokine interleukin-1 receptor antagonist gene (IL1RN) was also elevated much more in PPTA−/− septic mice. In addition, semiquantitative RT-PCR analysis supported the microarray data. The microarray data imply that the elevated levels of inflammatory gene expression in the early stages of sepsis in PPTA-knockout mice are possibly aimed to resolve the infection without excessive immunosuppression. As scientists are divided over the effects of pro- and antiinflammatory mediators in sepsis, it seems prudent to define the status depending on a complete genome profile. This is the first report exploring pulmonary gene expression profiles using microarray analysis in PPTA-knockout mice subjected to cecal ligation and puncture-induced sepsis and providing additional biological insight into the protection received against lung injury and mortality
    corecore