226 research outputs found

    Towards dynamically consistent real-time gait pattern generation for full-size humanoid robots

    No full text
    We propose a two-stage gait pattern generation scheme for the full-scale humanoid robots, that considers the dynamics of the system throughout the process. The fist stage is responsible for generating semi-dynamically consistent step position and step time information, while the second stage incorporated with multi-body dynamics system is responsible for generation of gait pattern that is feasible and stable on the full-scale multi-degree-of-freedom humanoid robot. The approach allows for very rapid gait pattern regeneration during the swing phase of motion and includes information about present dynamic state when regenerating the new pattern. The paper contains description of a developed method, as well as experimental results proving its effectiveness

    Step sequence and direction detection of four square step test

    Get PDF
    Poor balance control and falls are big issues for older adults that due to aging decline have a lower postural balance and directional control in balance performance than younger age groups. The four square step test (FSST) was developed to evaluate rapid stepping that is often required when changing direction and avoiding obstacles while walking. However, previous researchers used only the total time as the assessment in the test. The aim of this letter is to objectively quantify the sequence and direction of the steps in FSST, by using two inertial sensors placed on both feet. An algorithm was developed to automatically segment the steps performed during the test, and calculate the stepping direction from the linear velocity of the foot. Experiments were conducted with 100 Japanese healthy older adults, where sensor data and video of 20 subjects were randomly subtracted for algorithm verification. The results showed that the algorithm succeeded for 71.7% trials in recognizing both the step sequence and step direction in FSST, while 90.2% of the detection failure could be excluded with an auto verification method

    Using the Waseda Bioinstrumentation System WB-1R to analyze Surgeon’s performance during laparoscopy - towards the development of a global performance index -

    Get PDF
    Minimally invasive surgery (MIS) has become very common in recent years, thanks to the many advantages it provides for patients. Since it is difficult for surgeons to learn and master this technique, several training methods and metrics have been proposed, both to improve the surgeon's abilities and also to assess his/her skills. This paper presents the use of the WB-1R (Waseda Bioinstrumentation system no.1. Refined), which was developed at Waseda University, Tokyo, to investigate and analyze a surgeon's movements and performance. Specifically, the system can measure the movements of the head, the arms, and the hands, as well as several physiological parameters. In this paper we present our experiment to evaluate a surgeon's ability to handle surgical instruments and his/her depth perception using a laparoscopic view. Our preliminary analysis of a subset of the acquired data (i.e. comfort of the subjects; the amount of time it took o complete each exercise; and respiration) clearly shows that the expert surgeon and the group of medical students perform very differently. Therefore, WB-1R (or, better, a newer version tailored specifically for use in the operating room) could provide important additional information to help assess the experience and performance of surgeons, thus leading to the development of a Global Performance Index for surgeons during MIS. These analyses and modeling, moreover, are an important step towards the automatization and the robotic assistance of the surgical gesture

    Phase Behavior of Bent-Core Molecules

    Full text link
    Recently, a new class of smectic liquid crystal phases (SmCP phases) characterized by the spontaneous formation of macroscopic chiral domains from achiral bent-core molecules has been discovered. We have carried out Monte Carlo simulations of a minimal hard spherocylinder dimer model to investigate the role of excluded volume interations in determining the phase behavior of bent-core materials and to probe the molecular origins of polar and chiral symmetry breaking. We present the phase diagram as a function of pressure or density and dimer opening angle ψ\psi. With decreasing ψ\psi, a transition from a nonpolar to a polar smectic phase is observed near ψ=167∘\psi = 167^{\circ}, and the nematic phase becomes thermodynamically unstable for ψ<135∘\psi < 135^{\circ}. No chiral smectic or biaxial nematic phases were found.Comment: 4 pages Revtex, 3 eps figures (included

    CP Violation and Lightest Neutrino Mass Effects in Thermal Leptogenesis

    Full text link
    Effects of the lightest neutrino mass in "flavoured" leptogenesis when the CP-violation necessary for the generation of the baryon asymmetry of the Universe is due exclusively to the Dirac and/or Majorana phases in the neutrino mixing matrix UU are discussed. The type I see-saw scenario with three heavy right-handed Majorana neutrinos having hierarchical spectrum is considered. The "orthogonal" parametrisation of the matrix of neutrino Yukawa couplings, which involves a complex orthogonal matrix RR, is employed. Results for light neutrino mass spectrum with normal and inverted ordering (hierarchy) are reviewed.Comment: To appear in the proceedings of DISCRETE'08, Symposium on Prospects in the Physics of Discrete Symmetries, IFIC, Valencia, Spain, 11-16 December 200

    Effects of simultaneously performed dual-task training with aerobic exercise and working memory training on cognitive functions and neural systems in the elderly

    Get PDF
    Working memory (WM) training (WMT), aerobic exercise training (AET), and dual-task training improve cognitive functions and alter neural systems in older adults. In particular, the effects have been investigated of dual-task training that combines a walking or standing activity (balance exercise) simultaneously performed with cognitive training (which is ecologically difficult for the elderly). In this study, we investigated the effects of simultaneously performed dual-task training incorporating both AET and WMT (SDAEWMT), using a recumbent ergocycle bicycle and a WMT program that provided a portable console and made the training ecologically easy for the elderly. Older adults ( years old) participated in 3 months of SDAEWMT, WMT, or AET after random allocation, and the effects of SDAEWMT were compared with those of WMT and AET. Prior to and after training, all the subjects underwent cognitive testing, magnetic resonance imaging (MRI) involving diffusion tensor imaging (DTI), and functional MRI during performance of an N-back WM task. SDAEWMT improved executive function (performance of a frontal assessment battery); however, there was no evidence of broader transfer effects or enhanced learning with WMT. SDAEWMT resulted in mean diffusivity changes in brain areas involving the dopaminergic system, suggesting that neural tissue changes occurred in these areas. SDAEWMT also resulted in an increase in brain activity during the 2-back working memory task in brain areas involved in attentional reorientation. These results suggest that SDAEWMT is effective for improving cognitive functions and inducing beneficial neural changes in older adults

    Unexpected electric-field-induced antiferroelectric liquid crystal phase in the Sm C*α temperature range and the discrete flexoelectric effect

    Get PDF
    The unique nanometer-sized helical structure in SmCα∗ may sometimes evolve continuously to the micrometer-sized one in SmC∗; conceivably ferroelectric SmCα∗ is to be unwound by an applied electric field. By drawing electric-field-induced birefringence contours in the field-temperature phase diagram and by studying the superlattice structure of the field-induced subphase with resonant x-ray scattering, we established that an applied field unexpectedly stabilizes the well-known antiferroelectric four-layer biaxial subphase as well as the other prototypal ferrielectric three-layer one in the SmCα∗ temperature range; the effective long-range interlayer interaction due to the discrete flexoelectric effect actually plays an important role in stabilizing not only the biaxial subphases but also the optically uniaxial SmCα∗ subphase, contrary to the notion that the competition between the direct interactions of the nearest-neighbor layers and those of the next-nearest-neighbor layers should be required for the nanometer-sized helical structure

    Is hugging a robot weird? Investigating the influence of robot appearance on users' perception of hugging

    Get PDF
    Humanoid robots are expected to be able to communicate with humans using physical interaction, including hug, which is a common gesture of affection. In order to achieve that, their physical embodiment has to be carefully planned, as a user-friendly design will facilitate interaction and minimise repulsion. In this paper, we investigate the effect of manipulating the visual/tactile appearance of a robot, covering wires and metallic parts with clothes, and the auditory effect by enabling or disabling the connector of the hand. The experiment consists in a hugging interaction between the participants and the humanoid robot ARMAR-IIIb. Results after participation of 24 subjects confirm the positive effect from using clothes to modify the appearance and the negative effect of noise and vibration

    Mapping the Number of Molecules and Brightness in the Laser Scanning Microscope

    Get PDF
    We describe a technique based on moment-analysis for the measurement of the average number of molecules and brightness in each pixel in fluorescence microscopy images. The average brightness of the particle is obtained from the ratio of the variance to the average intensity at each pixel. To obtain the average number of fluctuating particles, we divide the average intensity at one pixel by the brightness. This analysis can be used in a wide range of concentrations. In cells, the intensity at any given pixel may be due to bright immobile structures, dim fast diffusing particles, and to autofluorescence or scattering. The total variance is given by the variance of each of the above components in addition to the variance due to detector noise. Assuming that all sources of variance are independent, the total variance is the sum of the variances of the individual components. The variance due to the particles fluctuating in the observation volume is proportional to the square of the particle brightness while the variance of the immobile fraction, the autofluorescence, scattering, and that of the detector is proportional to the intensity of these components. Only the fluctuations that depend on the square of the brightness (the mobile particles) will have a ratio of the variance to the intensity >1. Furthermore, changing the fluorescence intensity by increasing the illumination power, distinguishes between these possible contributions. We show maps of molecular brightness and number of cell migration proteins obtained using a two-photon scanning microscope operating with a photon-counting detector. These brightness maps reveal binding dynamics at the focal adhesions with pixel resolution and provide a picture of the binding and unbinding process in which dim molecules attach to the adhesions or large molecular aggregates dissociate from adhesion
    • …
    corecore