34,392 research outputs found

    Ion implantation damage of silicon as observed by optical reflection spectroscopy in the 1 to 6 eV region

    Get PDF
    Optical reflection spectra of crystalline, sputtered, and ion implanted silicon specimens are presented. Characteristic aspects of the spectra of ion implanted specimens are related to lattice damage

    Compensating for pneumatic distortion in pressure sensing devices

    Get PDF
    A technique of compensating for pneumatic distortion in pressure sensing devices was developed and verified. This compensation allows conventional pressure sensing technology to obtain improved unsteady pressure measurements. Pressure distortion caused by frictional attenuation and pneumatic resonance within the sensing system makes obtaining unsteady pressure measurements by conventional sensors difficult. Most distortion occurs within the pneumatic tubing which transmits pressure impulses from the aircraft's surface to the measurement transducer. To avoid pneumatic distortion, experiment designers mount the pressure sensor at the surface of the aircraft, (called in-situ mounting). In-situ transducers cannot always fit in the available space and sometimes pneumatic tubing must be run from the aircraft's surface to the pressure transducer. A technique to measure unsteady pressure data using conventional pressure sensing technology was developed. A pneumatic distortion model is reduced to a low-order, state-variable model retaining most of the dynamic characteristics of the full model. The reduced-order model is coupled with results from minimum variance estimation theory to develop an algorithm to compensate for the effects of pneumatic distortion. Both postflight and real-time algorithms are developed and evaluated using simulated and flight data

    Political Ambition and Legislative Behavior in the European Parliament

    Get PDF
    Members of the European Parliament (MEP) typically follow one of two career paths, either advancing within the European Parliament itself or returning to higher office in their home states. We argue that these different ambitions condition legislative behavior. Specifically, MEPs seeking domestic careers defect from group-leadership votes more frequently and oppose legislation that expands the purview of supranational institutions. We show how individual, domestic-party, and national level variables shape the careers available to MEPs and, in turn, their voting choices. To test the argument, we analyze MEPs' roll-call voting behavior in the 5th session of the EP (1999-2004) using a random effects model that captures idiosyncrasies in voting behavior across both individual MEPs and specific roll-call votes.published or submitted for publicationnot peer reviewe

    Progress in three-particle scattering from LQCD

    Full text link
    We present the status of our formalism for extracting three-particle scattering observables from lattice QCD (LQCD). The method relies on relating the discrete finite-volume spectrum of a quantum field theory with its scattering amplitudes. As the finite-volume spectrum can be directly determined in LQCD, this provides a method for determining scattering observables, and associated resonance properties, from the underlying theory. In a pair of papers published over the last two years, two of us have extended this approach to apply to relativistic three-particle scattering states. In this talk we summarize recent progress in checking and further extending this result. We describe an extension of the formalism to include systems in which two-to-three transitions can occur. We then present a check of the previously published formalism, in which we reproduce the known finite-volume energy shift of a three-particle bound state.Comment: 9 pages, 3 figures, proceedings for XIIth Quark Confinement and the Hadron Spectrum (CONF12

    An apertureless near-field microscope for fluorescence imaging

    Get PDF
    We describe an apertureless near field microscope for imaging fluorescent samples. Optical contrast is generated by exploiting fluorescent quenching near a metallized atomic force microscope tip. This microscope has been used to image fluorescent latex beads with subdiffraction limit resolution. The use of fluorescence allows us to prove that the contrast mechanism is indeed spectroscopic in origin

    Three-particle systems with resonant subprocesses in a finite volume

    Get PDF
    In previous work, we have developed a relativistic, model-independent three-particle quantization condition, but only under the assumption that no poles are present in the two-particle K matrices that appear as scattering subprocesses. Here we lift this restriction, by deriving the quantization condition for identical scalar particles with a G-parity symmetry, in the case that the two-particle K matrix has a pole in the kinematic regime of interest. As in earlier work, our result involves intermediate infinite-volume quantities with no direct physical interpretation, and we show how these are related to the physical three-to-three scattering amplitude by integral equations. This work opens the door to study processes such as a2ρππππa_2 \to \rho \pi \to \pi \pi \pi, in which the ρ\rho is rigorously treated as a resonance state.Comment: 46 pages, 9 figures, JLAB-THY-18-2819, CERN-TH-2018-21

    Numerical study of the relativistic three-body quantization condition in the isotropic approximation

    Get PDF
    We present numerical results showing how our recently proposed relativistic three-particle quantization condition can be used in practice. Using the isotropic (generalized ss-wave) approximation, and keeping only the leading terms in the effective range expansion, we show how the quantization condition can be solved numerically in a straightforward manner. In addition, we show how the integral equations that relate the intermediate three-particle infinite-volume scattering quantity, Kdf,3\mathcal K_{\text{df},3}, to the physical scattering amplitude can be solved at and below threshold. We test our methods by reproducing known analytic results for the 1/L1/L expansion of the threshold state, the volume dependence of three-particle bound-state energies, and the Bethe-Salpeter wavefunctions for these bound states. We also find that certain values of Kdf,3\mathcal K_{\text{df},3} lead to unphysical finite-volume energies, and give a preliminary analysis of these artifacts.Comment: 32 pages, 21 figures, JLAB-THY-18-2657, CERN-TH-2018-046; version 2: corrected typos, updated references, minor stylistic changes---consistent with published versio

    Perturbative Gadgets at Arbitrary Orders

    Full text link
    Adiabatic quantum algorithms are often most easily formulated using many-body interactions. However, experimentally available interactions are generally two-body. In 2004, Kempe, Kitaev, and Regev introduced perturbative gadgets, by which arbitrary three-body effective interactions can be obtained using Hamiltonians consisting only of two-body interactions. These three-body effective interactions arise from the third order in perturbation theory. Since their introduction, perturbative gadgets have become a standard tool in the theory of quantum computation. Here we construct generalized gadgets so that one can directly obtain arbitrary k-body effective interactions from two-body Hamiltonians. These effective interactions arise from the kth order in perturbation theory.Comment: Corrected an error: U dagger vs. U invers
    corecore