10,538 research outputs found

    The s-process branching at 185W

    Get PDF
    The neutron capture cross section of the unstable nucleus 185W has been derived from experimental photoactivation data of the inverse reaction 186W(gamma,n)185W. The new result of sigma = (687 +- 110) mbarn confirms the theoretically predicted neutron capture cross section of 185W of sigma = 700 mbarn at kT = 30 keV. A neutron density in the classical s-process of n_n = (3.8 +0.9 -0.8} * 1e8 cm-3 is derived from the new data for the 185W branching. In a stellar s-process model one finds a significant overproduction of the residual s-only nucleus 186Os.Comment: ApJ, in pres

    Elastic alpha-scattering of 112Sn and 124Sn at astrophysically relevant energies

    Get PDF
    The cross sections for the elastic scattering reactions {112,124}Sn(a,a){112,124}Sn at energies above and below the Coulomb barrier are presented and compared to predictions for global alpha-nucleus potentials. The high precision of the new data allows a study of the global alpha-nucleus potentials at both the proton and neutron-rich sides of an isotopic chain. In addition, local alpha-nucleus potentials have been extracted for both nuclei, and used to reproduce elastic scattering data at higher energies. Predictions from the capture cross section of the reaction 112Sn(a,g)116Te at astrophysically relevant energies are presented and compared to experimental data.Comment: 20 pages, 10 figures, accepted for publication in Phys. Rev.

    Coordinate-space approach to the bound-electron self-energy: Self-Energy screening calculation

    Get PDF
    The self-energy screening correction is evaluated in a model in which the effect of the screening electron is represented as a first-order perturbation of the self energy by an effective potential. The effective potential is the Coulomb potential of the spherically averaged charge density of the screening electron. We evaluate the energy shift due to a 1s1/21s_{1/2}, 2s1/22s_{1/2}, 2p1/22p_{1/2}, or 2p3/22p_{3/2} electron screening a 1s1/21s_{1/2}, 2s1/22s_{1/2}, 2p1/22p_{1/2}, or 2p3/22p_{3/2} electron, for nuclear charge Z in the range 5≀Z≀925 \le Z\le 92. A detailed comparison with other calculations is made.Comment: 54 pages, 10 figures, 4 table

    Lamb Shift of 3P and 4P states and the determination of α\alpha

    Get PDF
    The fine structure interval of P states in hydrogenlike systems can be determined theoretically with high precision, because the energy levels of P states are only slightly influenced by the structure of the nucleus. Therefore a measurement of the fine structure may serve as an excellent test of QED in bound systems or alternatively as a means of determining the fine structure constant α\alpha with very high precision. In this paper an improved analytic calculation of higher-order binding corrections to the one-loop self energy of 3P and 4P states in hydrogen-like systems with low nuclear charge number ZZ is presented. A comparison of the analytic results to the extrapolated numerical data for high ZZ ions serves as an independent test of the analytic evaluation. New theoretical values for the Lamb shift of the P states and for the fine structure splittings are given.Comment: 33 pages, LaTeX, 4 tables, 4 figure

    Massive stars in the hinterland of the young cluster, Westerlund 2

    Get PDF
    Accepted for publication in MNRAS, 13 July 2018. 16 pages, plus one-page table in an appendix.An unsettled question concerning the formation and distribution of massive stars is whether they must be born in massive clusters and, if found in less dense environments, whether they must have migrated there. With the advent of wide-area digital photometric surveys, it is now possible to identify massive stars away from prominent Galactic clusters without bias. In this study we consider 40 candidate OB stars found in the field around the young massive cluster, Westerlund 2, by Mohr-Smith et al.: these are located inside a box of 1.5 × 1.5 deg 2 and are selected on the basis of their extinctions and K magnitudes.We present VLT/X-shooter spectra of two of the hottest O stars, respectively 11 and 22 arcmin from the centre of Westerlund 2. They are confirmed as O4V stars, with stellar masses likely to be in excess of 40 M ·. Their radial velocities relative to the non-binary reference object, MSP 182, in Westerlund 2 are -29.4 ± 1.7 and -14.4 ± 2.2 km s -1, respectively. Using Gaia DR2 proper motions we find that between 8 and 11 early O/WR stars in the studied region (including the two VLT targets, plus WR 20c and WR 20aa) could have been ejected fromWesterlund 2 in the last one million years. This represents an efficiency of massive-star ejection of up to ~ 25 per cent. On sky, the positions of these stars and their proper motions show a near N-S alignment. We discuss the possibility that these results are a consequence of prior sub-cluster merging combining with dynamical ejection.Peer reviewe

    Higher-order binding corrections to the Lamb shift of 2P states

    Get PDF
    We present an improved calculation of higher-order corrections to the one-loop self energy of 2P states in hydrogen-like systems with small nuclear charge Z. The method is based on a division of the integration with respect to the photon energy into a high- and a low-energy part. The high-energy part is calculated by an expansion of the electron propagator in powers of the Coulomb field. The low-energy part is simplified by the application of a Foldy-Wouthuysen transformation. This transformation leads to a clear separation of the leading contribution from the relativistic corrections and removes higher order terms. The method is applied to the 2P_{1/2} and 2P_{3/2} states in atomic hydrogen. The results lead to new theoretical values for the Lamb shifts and the fine structure splitting.Comment: 18 pages, LaTeX. In comparison to the journal version, it contains an added note (2000) which reflects the current status of Lamb shift calculation

    Screened self-energy correction to the 2p3/2-2s transition energy in Li-like ions

    Full text link
    We present an ab initio calculation of the screened self-energy correction for (1s)^2 2p3/2 and (1s)^2 2s states of Li-like ions with nuclear charge numbers in the range Z = 12-100. The evaluation is carried out to all orders in the nuclear-strength parameter Z \alpha. This investigation concludes our calculations of all two-electron QED corrections for the 2p3/2-2s transition energy in Li-like ions and thus considerably improves theoretical predictions for this transition for high-Z ions

    How important is the Family? : Alpha nuclear potentials and p-process nucleosynthesis

    Get PDF
    Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike LicenceIn this work we present the results from the analysis of the experimentally measured angular distributions of the reaction 106Cd(α , α )106 Cd at several different energies around the Coulomb barrier. The difficulties that arise in the study of 106Cd-α -nuclear potential and the so called Family Problem are addressed in this work

    Improvement of Shelf Life for Space Food Through a Hurdle Approach

    Get PDF
    The processed and prepackaged spaceflight food system is a critical human support system for manned space flights. As missions extend longer and farther from Earth over the next 20 years, strategies to stabilize the nutritional and sensory quality of food must be identified. For a mission to Mars, the space foods themselves must maintain quality for up to 5 years to align with cargo prepositioning scenarios. Optimizing the food system to achieve a 5-year shelf life mitigates the risk of an inadequate food system during extended missions. Because previous attempts to determine a singular pathway to a 5-year shelf life for food were unsuccessful, this investigation combines several approaches, based on science, technological advancement, and past empirical evidence, that will define the prepackaged food system for long duration missions. This study supports the Advanced Food Technology strategic planning process by identifying food processing, packaging, and storage technologies that will be required for exploration missions and the extent that they must be implemented to achieve a 5-year shelf life for the entire food system
    • 

    corecore