26,864 research outputs found
Some analysis on the diurnal variation of rainfall over the Atlantic Ocean
Data collected from the GARP Atlantic Tropical Experiment (GATE) was examined. The data were collected from 10,000 grid points arranged as a 100 x 100 array; each grid covered a 4 square km area. The amount of rainfall was measured every 15 minutes during the experiment periods using c-band radars. Two types of analyses were performed on the data: analysis of diurnal variation was done on each of grid points based on the rainfall averages at noon and at midnight, and time series analysis on selected grid points based on the hourly averages of rainfall. Since there are no known distribution model which best describes the rainfall amount, nonparametric methods were used to examine the diurnal variation. Kolmogorov-Smirnov test was used to test if the rainfalls at noon and at midnight have the same statistical distribution. Wilcoxon signed-rank test was used to test if the noon rainfall is heavier than, equal to, or lighter than the midnight rainfall. These tests were done on each of the 10,000 grid points at which the data are available
Deterministic entanglement of two neutral atoms via Rydberg blockade
We demonstrate the first deterministic entanglement of two individually
addressed neutral atoms using a Rydberg blockade mediated controlled-NOT gate.
Parity oscillation measurements reveal an entanglement fidelity of
, which is above the entanglement threshold of , without
any correction for atom loss, and after correcting for
background collisional losses. The fidelity results are shown to be in good
agreement with a detailed error model.Comment: 4 figure
Approximate theoretical performance evaluation for a diverging rocket
A simplified combustion model, which is motivated by available performance studies on the diverging rocket reactor, has been used as basis for an engine performance
evaluation. Comparison with conventional rocket configurations shows that an upper performance limit for the diverging reactor is comparable with performance
estimates for engines using an adiabatic work cycle. Development of the diverging reactor for engine applications may, however, offer some advantages for very hot, high-energy, propellant systems
Hybrid Superconductor-Quantum Point Contact Devices using InSb Nanowires
Proposals for studying topological superconductivity and Majorana bound
states in nanowires proximity coupled to superconductors require that transport
in the nanowire is ballistic. Previous work on hybrid nanowire-superconductor
systems has shown evidence for Majorana bound states, but these experiments
were also marked by disorder, which disrupts ballistic transport. In this
letter, we demonstrate ballistic transport in InSb nanowires interfaced
directly with superconducting Al by observing quantized conductance at
zero-magnetic field. Additionally, we demonstrate that the nanowire is
proximity coupled to the superconducting contacts by observing Andreev
reflection. These results are important steps for robustly establishing
topological superconductivity in InSb nanowires
Rydberg state mediated quantum gates and entanglement of pairs of neutral atoms
Experiments performed within the last year have demonstrated Rydberg state
mediated quantum gates and deterministic entanglement between pairs of trapped
neutral atoms. These experiments validate ten year old proposals for Rydberg
mediated quantum logic, but are only the beginning of ongoing efforts to
improve the fidelity of the results obtained and scale the experiments to
larger numbers of qubits. We present here a summary of the results to date,
along with a critical evaluation of the prospects for higher fidelity Rydberg
gates.Comment: submitted to ICAP 2010 proceeding
Analytic Representation of The Dirac Equation
In this paper we construct an analytical separation (diagonalization) of the
full (minimal coupling) Dirac equation into particle and antiparticle
components. The diagonalization is analytic in that it is achieved without
transforming the wave functions, as is done by the Foldy-Wouthuysen method, and
reveals the nonlocal time behavior of the particle-antiparticle relationship.
We interpret the zitterbewegung and the result that a velocity measurement (of
a Dirac particle) at any instant in time is, as reflections of the fact that
the Dirac equation makes a spatially extended particle appear as a point in the
present by forcing it to oscillate between the past and future at speed c. From
this we infer that, although the form of the Dirac equation serves to make
space and time appear on an equal footing mathematically, it is clear that they
are still not on an equal footing from a physical point of view. On the other
hand, the Foldy-Wouthuysen transformation, which connects the Dirac and square
root operator, is unitary. Reflection on these results suggests that a more
refined notion (than that of unitary equivalence) may be required for physical
systems
Why is timing of bird migration advancing when individuals are not?
Recent advances in spring arrival dates have been reported in many migratory species but the mechanism driving these advances is unknown. As population declines are most widely reported in species that are not advancing migration, there is an urgent need to identify the mechanisms facilitating and constraining these advances. Individual plasticity in timing of migration in response to changing climatic conditions is commonly proposed to drive these advances but plasticity in individual migratory timings is rarely observed. For a shorebird population that has significantly advanced migration in recent decades, we show that individual arrival dates are highly consistent between years, but that the arrival dates of new recruits to the population are significantly earlier now than in previous years. Several mechanisms could drive advances in recruit arrival, none of which require individual plasticity or rapid evolution of migration timings. In particular, advances in nest-laying dates could result in advanced recruit arrival, if benefits of early hatching facilitate early subsequent spring migration. This mechanism could also explain why arrival dates of short-distance migrants, which generally return to breeding sites earlier and have greater scope for advance laying, are advancing more rapidly than long-distance migrants
Progress in thin film GaAs solar cells
Solar cells using polycrystalline films of gallium arsenid
- …