46,217 research outputs found

    Numerical Results for the Ground-State Interface in a Random Medium

    Get PDF
    The problem of determining the ground state of a dd-dimensional interface embedded in a (d+1)(d+1)-dimensional random medium is treated numerically. Using a minimum-cut algorithm, the exact ground states can be found for a number of problems for which other numerical methods are inexact and slow. In particular, results are presented for the roughness exponents and ground-state energy fluctuations in a random bond Ising model. It is found that the roughness exponent ζ=0.41±0.01,0.22±0.01\zeta = 0.41 \pm 0.01, 0.22 \pm 0.01, with the related energy exponent being Ξ=0.84±0.03,1.45±0.04\theta = 0.84 \pm 0.03, 1.45 \pm 0.04, in d=2,3d = 2, 3, respectively. These results are compared with previous analytical and numerical estimates.Comment: 10 pages, REVTEX3.0; 3 ps files (separate:tar/gzip/uuencoded) for figure

    Geometric scaling in ultrahigh energy neutrinos and nonlinear perturbative QCD

    Full text link
    It is shown that in ultrahigh energy inelastic neutrino-nucleon(nucleus) scattering the cross sections for the boson-hadron(nucleus) reactions should exhibit geometric scaling on the single variable tau_A =Q2/Q2_{sat,A}. The dependence on energy and atomic number of the charged/neutral current cross sections are encoded in the saturation momentum Q_{sat,A}. This fact allows an analytical computation of the neutrino scattering on nucleon/nucleus at high energies, providing a theoretical parameterization based on the scaling property.Comment: 5 pages, 4 figure

    Erratum: algebraic spin liquid as the mother of many competing orders

    Full text link
    We correct an error in our paper Phys. Rev. B 72, 104404 (2005) [cond-mat/0502215]. We show that a particular fermion bilinear is not related to the other ``competing orders'' of the algebraic spin liquid, and does not possess their slowly decaying correlations. For the square lattice staggered flux spin liquid (equivalently, d-wave RVB state), this observable corresponds to the uniform spin chirality.Comment: 1.25 page

    Interacting topological phases in multiband nanowires

    Full text link
    We show that semiconductor nanowires coupled to an s-wave superconductor provide a playground to study effects of interactions between different topological superconducting phases supporting Majorana zero-energy modes. We consider quasi-one dimensional system where the topological phases emerge from different transverse subbands in the nanowire. In a certain parameter space, we show that there is a multicritical point in the phase diagram where the low-energy theory is equivalent to the one describing two coupled Majorana chains. We study effect of interactions as well as symmetry-breaking perturbations on the topological phase diagram in the vicinity of this multicritical point. Our results shed light on the stability of the topological phase around the multicritical point and have important implications for the experiments on Majorana nanowires.Comment: 8 pages, 2 figures; final version to appear in PR

    Towards Verifiably Ethical Robot Behaviour

    Full text link
    Ensuring that autonomous systems work ethically is both complex and difficult. However, the idea of having an additional `governor' that assesses options the system has, and prunes them to select the most ethical choices is well understood. Recent work has produced such a governor consisting of a `consequence engine' that assesses the likely future outcomes of actions then applies a Safety/Ethical logic to select actions. Although this is appealing, it is impossible to be certain that the most ethical options are actually taken. In this paper we extend and apply a well-known agent verification approach to our consequence engine, allowing us to verify the correctness of its ethical decision-making.Comment: Presented at the 1st International Workshop on AI and Ethics, Sunday 25th January 2015, Hill Country A, Hyatt Regency Austin. Will appear in the workshop proceedings published by AAA
    • 

    corecore