14,451 research outputs found
Analysis And Performance Of A Picosecond Dye Laser Amplifier Chain
Design considerations are discussed for a simple, easy to use and relatively efficient high gain dye laser amplifier chain for CW mode-locked dye lasers. The amplifier boosts the output of a synchronously mode-locked dye laser to obtain â005 mj, †1 psec pulses over a â 400 Ă
bandwidth. These pulses are suitable for efficient Raman Shifting, frequency mixing and continuum generation to vastly extend the spectral range of the system. Our amplifier is pumped by a frequency doubled Nd:YAG oscillator only, which longitudinally pumps three identical brewster cells with the same flowing dye solution in each. Contrary to popular belief, high small signal gains (â„ 105) are easily attained in a single stage with longitudinal pumping, with better beam homogeneity and easier alignment than transverse pumping. Gain saturation measurements are presented which agree well with calculations. Factors which relax the pump timing sensitivity are examined. The importance of gain saturation for both efficient amplification and for amplitude stability is also discussed. The need for isolated amplifier stages is stressed and optimal amplifier cell areas for a given stage are calculated
The Lattice Free Energy with Overlap Fermions: A Two-Loop Result
We calculate the 2-loop partition function of QCD on the lattice, using the
Wilson formulation for gluons and the overlap-Dirac operator for fermions.
Direct by-products of our result are the 2-loop free energy and average
plaquette. Our calculation serves also as a prototype for further higher loop
calculations in the overlap formalism. We present our results as a function of
a free parameter entering the overlap action; the dependence on the
number of colors and fermionic flavors is shown explicitly.Comment: 10 pages, 5 figures. Final version to appear in Physical Review D. A
missing overall factor was inserted in Eq. 12; it affects also Eq. 1
Two-dimensional quasineutral description of particles and fields above discrete auroral arcs
Stationary hot and cool particle distributions in the auroral magnetosphere are modelled using adiabatic assumptions of particle motion in the presence of broad-scale electrostatic potential structure. The study has identified geometrical restrictions on the type of broadscale potential structure which can be supported by a multispecies plasma having specified sources and energies. Without energization of cool thermal ionospheric electrons, a substantial parallel potential drop cannot be supported down to altitudes of 2000 km or less. Observed upward-directed field-aligned currents must be closed by return currents along field lines which support little net potential drop. In such regions the plasma density appears significantly enhanced. Model details agree well with recent broad-scale implications of satellite observations
On the structures and mapping of auroral electrostatic potentials
The mapping of magnetospheric and ionospheric electric fields in a kinetic model of magnetospheric-ionospheric electrodynamic coupling proposed for the aurora is examined. One feature is the generalization of the kinetic current-potential relationship to the return current region (identified as a region where the parallel drop from magnetosphere to ionosphere is positive); such a return current always exists unless the ionosphere is electrically charged to grossly unphysical values. A coherent phenomenological picture of both the low energy return current and the high energy precipitation of an inverted-V is given. The mapping between magnetospheric and ionospheric electric fields is phrased in terms of a Green's function which acts as a filter, emphasizing magnetospheric latitudinal spatial scales of order (when mapped to the ionosphere) 50 to 150 km. This same length, when multiplied by electric fields just above the ionosphere, sets the scale for potential drops between the ionosphere and equatorial magnetosphere
The Gurudharmas in Taiwanese Buddhist Nunneries
According to tradition, MahÄprajÄpatÄ«, the Buddhaâs aunt and stepmother, when allowed to join the Buddhist monastic community, accepted eight âfundamental rulesâ (gurudharmas) that made the nunsâ order depend-ent upon the monksâ order. This story has given rise to much debate, in the past as well as in the present. This article first shows how the eight rules became an integrated part of the vinaya (disciplinary texts), and more par-ticularly of the Dharmaguptakavinaya, that forms the basis of monastic ordinations in East Asia. Against the background of a much debated attack on these gurudharmas by the Taiwanese nun Shih Chao-hwei, we have then analysed the viewpoints of contemporary Taiwanese nuns, focusing on some less studied, yet very influential, Taiwanese monastic institutes. This research has brought to light a diversity of opinions on the applicability of the rules, relying in each case on a clear vision on Buddhism and vinaya
Direct measurement of the carrier leakage in an InGaAsP/InP laser
Carrier leakage over the heterobarrier in an InGaAsP/InP laser is measured directly in a laser-bipolar-transistor structure. Experimental results indicate a significant amount of carrier leakage under normal laser operating conditions
Low threshold InGaAsP terrace mass transport laser on semi-insulating substrate
Very low threshold InGaAsP terrace lasers on semi-insulating (SI) InP substrate have been fabricated using the mass transport technique. The fabrication process involves a single-step liquid phase epitaxial (LPE) growth followed by a mass transport of InP at ~675 °C in the presence of an InP cover wafer. Lasers operating in the fundamental transverse mode with smooth far-field patterns and threshold currents as low as 9.5 mA have been obtained
Very low threshold InGaAsP mesa laser
Very low threshold currents InGaAsP/InP terrace mesa (T-ME) lasers with an unpassivated surface have been fabricated on semi-insulating (SI) InP substrates. Fabrication of the lasers involves a single-step liquid phase epitaxial (LPE) growth and a simple etching process. Lasers operating in the fundamental transverse mode with threshold currents as low as 6.3 mA (for a cavity length of 250 ÎŒm) have been obtained. Comparison between the unpassivated lasers and those passivated using the mass transport technique is described
Carrier leakage and temperature dependence of InGaAsP lasers
A direct measurement of electron and hole leakage in InGaAsP/InP lasers has been carried out. The effect of electron leakage on the temperature sensitivity of InGaAsP/InP lasers has been revealed
- âŠ