45 research outputs found
Effects of Interleukin-10 Polymorphisms, Helicobacter pylori Infection, and Smoking on the Risk of Noncardia Gastric Cancer
OBJECTIVE: Both variations in the interleukin-10 (IL10) gene and environmental factors are thought to influence inflammation and gastric carcinogenesis. Therefore, we investigated the associations between IL10 polymorphisms, Helicobacter pylori (H. pylori) infection, and smoking in noncardia gastric carcinogenesis in Koreans. METHODS: We genotyped three promoter polymorphisms (-1082A>G, -819T>C, and -592 A>C) of IL10 in a case-control study of 495 noncardia gastric cancer patients and 495 sex- and age-matched healthy controls. Multiple logistic regression models were used to detect the effects of IL10 polymorphisms, H. pylori infection, and smoking on the risk of gastric cancer, which was stratified by the histological type of gastric cancer. RESULTS: The IL10-819C and -592C alleles were found to have complete linkage disequilibrium, and all three IL10 polymorphisms were associated with an increased risk of intestinal-type noncardia gastric cancer. These associations were observed only in H. pylori-positive subjects and current smokers. A statistically significant interaction between the IL10-592 genotype and H. pylori infection on the risk of intestinal-type gastric cancer was observed (P for interaction = 0.047). In addition, H. pylori-positive smokers who were carriers of either the IL10-1082G (OR [95% CI] = 17.76 [6.17-51.06]) or the -592C (OR [95% CI] = 8.37 [2.79-25.16]) allele had an increased risk of intestinal-type gastric cancer compared to H. pylori-negative nonsmokers homozygous for IL10-1082A and -592A, respectively. The interaction between the IL10-1082 polymorphism and the combined effects of H. pylori infection and smoking tended towards significance (P for interaction = 0.080). CONCLUSIONS: Inflammation-related genetic variants may interact with H. pylori infection and smoking to increase the risk of noncardia gastric cancer, particularly the intestinal-type. These findings may be helpful in identifying individuals at an increased risk for developing noncardia gastric cancer
Low vitamin D status is associated with systemic and gastrointestinal inflammation in dogs with a chronic enteropathy
Vitamin D is traditionally known for its role in calcium homeostasis and bone metabolism.
However, it has been demonstrated that numerous types of cells express the vitamin D
receptor and it is now clear that the physiological roles of vitamin D extend beyond the
maintenance of skeletal health. Vitamin D insufficiency, which is typically assessed by
measuring the major circulating form of vitamin D, 25 hydroxyvitamin D (25(OH)D), has
been associated with a number of disorders in people including hypertension, diabetes,
cardiovascular diseases, cancer, autoimmune conditions and infectious diseases. Meta-analyses
have demonstrated that serum 25(OH)D concentrations are an important predictor
of survival in people with a wide variety of illnesses and have been linked to all-cause
mortality in the general human population.
The role of vitamin D in non-skeletal disorders in cats and dogs is poorly understood. This is
surprising since cats and dogs could act as excellent models for probing the biology of
vitamin D. Vitamin D status in people is largely dependent on cutaneous production of
vitamin D. This is influenced by many factors such as season, latitude and exposure to
ultraviolet (UV) radiation. The interpretation of human studies investigating the effects
vitamin D status on disease outcomes are therefore influenced by a number of confounding
variables. Unlike humans, domesticated cats and dogs do not produce vitamin D cutaneously
and obtain vitamin D only from their diet. The physiological functions and regulation of
vitamin D are otherwise similar to humans. Most pets are fed commercial diets containing a
relatively standard amount of vitamin D. Consequently, companion animals are attractive
model systems in which to examine the relationship vitamin D status and health outcomes.
Furthermore, spontaneously occurring model systems which did not require disease to be
induced in healthy animals would allow the numbers of animals used in scientist research to
be reduced.
This thesis aimed to define vitamin D homeostasis in companion animals in three disease
settings; in cats with feline immunodeficiency virus (FIV) infection, dogs with chronic
enteropathies (CE) and in hospitalised ill cats. Additional aims were to assess the prognostic
significance of serum 25(OH)D concentrations in companion animals and the relationship
between serum 25(OH)D concentrations and markers of inflammation. The hypothesis of
this thesis was that vitamin status D would negatively correlate with presence of disease,
markers of inflammation and disease outcomes. As similar findings have been demonstrated
in human medicine, the hypothesis was that cats and dogs would be suitable models to
investigate the role of vitamin D in human disease.
This thesis demonstrates that in dogs with a CE serum 25(OH)D concentrations are
negatively correlated with inflammation and are predictive of clinical outcomes. Vitamin D
status was also lower in cats with FIV and importantly vitamin D status was predictive of
short term mortality in hospitalised ill cats. This research will be of interest to veterinary
surgeons and opens the possibility for clinical trials which examine if low vitamin D status is
causally associated with ill health and whether vitamin D supplementation results in superior
treatment outcomes in companion animals. This thesis also demonstrates the potential of cats
and dogs as model systems in which to examine the role of vitamin D in human health
Levels of alpha-toxin correlate with distinct phenotypic response profiles of blood mononuclear cells and with agr background of community-associated Staphylococcus aureus isolates
Epidemiological studies of Staphylococcus aureus have shown a relation between certain clones and the presence of specific virulence genes, but how this translates into virulence-associated functional responses is not fully elucidated. Here we addressed this issue by analyses of community-acquired S. aureus strains characterized with respect to antibiotic resistance, ST types, agr types, and virulence gene profiles. Supernatants containing exotoxins were prepared from overnight bacterial cultures, and tested in proliferation assays using human peripheral blood mononuclear cells (PBMC). The strains displayed stable phenotypic response profiles, defined by either a proliferative or cytotoxic response. Although, virtually all strains elicited superantigen-mediated proliferative responses, the strains with a cytotoxic profile induced proliferation only in cultures with the most diluted supernatants. This indicated that the superantigen-response was masked by a cytotoxic effect which was also confirmed by flow cytometry analysis. The cytotoxic supernatants contained significantly higher levels of α-toxin than did the proliferative supernatants. Addition of α-toxin to supernatants characterized as proliferative switched the response into cytotoxic profiles. In contrast, no effect of Panton Valentine Leukocidin, δ-toxin or phenol soluble modulin α-3 was noted in the proliferative assay. Furthermore, a significant association between agr type and phenotypic profile was found, where agrII and agrIII strains had predominantly a proliferative profile whereas agrI and IV strains had a predominantly cytotoxic profile. The differential response profiles associated with specific S. aureus strains with varying toxin production could possibly have an impact on disease manifestations, and as such may reflect specific pathotypes
SARS-CoV-2 infection - spread and pathogenicity
In December 2019, a new disease, similar to severe acute respiratory syndrome (SARS), was reported in Wuhan, China. It
was quickly indicated that the causative agent of this new coronavirus disease 2019 (COVID-19) is a previously unknown
coronavirus, now called SARS coronavirus 2 (SARS-CoV-2). The result of the global outbreak of COVID-19 in the world
(currently COVID-19 is present on all continents, except Antarctica) is the pandemic status 2019–2020, as declared by the
WHO and Public Health Emergency of International Concern (PHEIC).The virus has a high epidemic potential and is effectively
transmitted between humans. The primary route for SARS-CoV-2 infection to spread is air-droplet transmission. In addition,
SARS-CoV-2 can be transmitted through direct contact with an infected person, or indirectly via coronavirus-contaminated
materials or objects. Current data also indicate the possibility of an alternative route of SARS-CoV-2 infection – through
the gastrointestinal tract. The article discusses various SARS-CoV-2 transmission options, with particular attention paid to
the role of saliva and gastrointestinal tract in the spreading of the virus. Current data on SARS-CoV-2 pathogenicity and
clinical symptoms of COVID-19 are also analyzed. Expanding knowledge about SARS-CoV-2 infection, especially in terms
of its spread, will contribute to further actions aimed at preventing transmission of this pathogen