25 research outputs found

    GLP-1 Analogs Reduce Hepatocyte Steatosis and Improve Survival by Enhancing the Unfolded Protein Response and Promoting Macroautophagy

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is a known outcome of hepatosteatosis. Free fatty acids (FFA) induce the unfolded protein response (UPR) or endoplasmic reticulum (ER) stress that may induce apoptosis. Recent data indicate ER stress to be a major player in the progression of fatty liver to more aggressive lesions. Autophagy on the other hand has been demonstrated to be protective against ER stress-induced cell death. We hypothesized that exendin-4 (GLP-1 analog) treatment of fat loaded hepatocytes can reduce steatosis by autophagy which leads to reduced ER stress-related hepatocyte apoptosis.Primary human hepatocytes were loaded with saturated, cis- and trans-unsaturated fatty acids (palmitic, oleic and elaidic acid respectively). Steatosis, induced with all three fatty acids, was significantly resolved after exendin-4 treatment. Exendin-4 sustained levels of GRP78 expression in fat-loaded cells when compared to untreated fat-loaded cells alone. In contrast, CHOP (C/EBP homologous protein); the penultimate protein that leads to ER stress-related cell death was significantly decreased by exendin-4 in hepatocytes loaded with fatty acids. Finally, exendin-4 in fat loaded hepatocytes clearly promoted gene products associated with macroautophagy as measured by enhanced production of both Beclin-1 and LC3B-II, markers for autophagy; and visualized by transmission electron microscopy (TEM). Similar observations were made in mouse liver lysates after mice were fed with high fat high fructose diet and treated with a long acting GLP-1 receptor agonist, liraglutide.GLP-1 proteins appear to protect hepatocytes from fatty acid-related death by prohibition of a dysfunctional ER stress response; and reduce fatty acid accumulation, by activation of both macro-and chaperone-mediated autophagy. These findings provide a novel role for GLP-1 proteins in halting the progression of more aggressive lesions from underlying steatosis in humans afflicted with NAFLD

    Oral history interview with Clifford Swanlund, 2007 Oct. 5

    No full text
    Clifford A. Swanlund, Jr. graduated from Purdue with a Bachelors degree in Civil Engineering in 1953. He recounts growing up in St. Louis Missouri during the Great Depression. He graduated from Maplewood Richmond Heights High School in 1945 and came to Purdue with support and encouragement from a neighbor who was a Purdue graduate. He was awarded Basketball Rotary Club Award Trophy as the outstanding high school senior. Swanlund discusses his participation in Ross Camp along with campus life in the 1950s. Following graduation and as a ROTC designated military graduate, he was a member of the 35th Engineering Combat Battalion and stationed in Kitzingen, Germany. Upon his release from military service he worked for Shell Oil Company in Houston, but soon transferred to New Orleans. His autobiography Swanlund Family Plus My Story is with his papers housed in the Purdue Archives and Special Collections

    Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model

    No full text
    Minimally invasive microwave thermal therapies are being developed for the treatment of small renal cell carcinomas (RCC, d<3 cm). This study assessed the thermal history and corresponding tissue injury patterns resulting from microwave treatment of the porcine renal cortex. Three groups of kidneys were evaluated: (1) in vitro treated, (2) in vivo with 2-h post-treatment perfusion (acute) and (3) in vivo with 7-day post-treatment perfusion (chronic). The kidneys were treated with an interstitial water-cooled microwave probe (Urologix, Plymouth, MN) that created a lesion centered in the renal cortex (50 W for 10 min). The thermal histories were recorded at 0.5 cm radial intervals from the probe axis for correlation with the histologic cellular and vascular injury. The kidneys showed a reproducible 2 cm chronic lesion with distinct histologic injury zones identified. The thermal histories at the edge of these zones were found using Lagrangian interpolation. The threshold thermal histories for microvascular injury and stasis appeared to be lower than that for renal epithelial cell injury. The Arrhenius kinetic injury models were fit to the thermal histories and injury data to determine the kinetic parameters (i.e. activation energy and frequency factor) for the thermal injury processes. The resultant activation energies are consistent in magnitude with those for thermally induced protein denaturation. A 3-D finite element thermal model based on the Pennes bioheat equation was developed and solved using ANSYS (V7.0). The real geometry of the kidneys studied and temperature dependent thermal properties were used in this model. The specific absorption rate (SAR) of the microwave probe required for the thermal modelling was experimentally determined. The results from the thermal modelling suggest that the complicated change of local renal blood perfusion with temperature and time during microwave thermal therapy can be predicted, although a first order kinetic model may be insufficient to capture blood flow changes. The local blood perfusion was found to be a complicated function of temperature and time. A non-linear model based on the degree of vascular stasis was introduced to predict the blood perfusion. In conclusion, interstitial microwave thermal therapy in the normal porcine kidney results in predictable thermal and tissue injury behaviour. Future work in human kidney tissue will be necessary to confirm the clinical significance of these results

    Ride Specifications

    No full text
    corecore