341 research outputs found
Algebraic Unimodular Counting
We study algebraic algorithms for expressing the number of non-negative
integer solutions to a unimodular system of linear equations as a function of
the right hand side. Our methods include Todd classes of toric varieties via
Gr\"obner bases, and rational generating functions as in Barvinok's algorithm.
We report polyhedral and computational results for two special cases: counting
contingency tables and Kostant's partition function.Comment: 21 page
Algebraic Systems Biology: A Case Study for the Wnt Pathway
Steady state analysis of dynamical systems for biological networks give rise
to algebraic varieties in high-dimensional spaces whose study is of interest in
their own right. We demonstrate this for the shuttle model of the Wnt signaling
pathway. Here the variety is described by a polynomial system in 19 unknowns
and 36 parameters. Current methods from computational algebraic geometry and
combinatorics are applied to analyze this model.Comment: 24 pages, 2 figure
An Implicitization Challenge for Binary Factor Analysis
We use tropical geometry to compute the multidegree and Newton polytope of
the hypersurface of a statistical model with two hidden and four observed
binary random variables, solving an open question stated by Drton, Sturmfels
and Sullivant in "Lectures on Algebraic Statistics" (Problem 7.7). The model is
obtained from the undirected graphical model of the complete bipartite graph
by marginalizing two of the six binary random variables. We present
algorithms for computing the Newton polytope of its defining equation by
parallel walks along the polytope and its normal fan. In this way we compute
vertices of the polytope. Finally, we also compute and certify its facets by
studying tangent cones of the polytope at the symmetry classes vertices. The
Newton polytope has 17214912 vertices in 44938 symmetry classes and 70646
facets in 246 symmetry classes.Comment: 25 pages, 5 figures, presented at Mega 09 (Barcelona, Spain
Computing toric degenerations of flag varieties
We compute toric degenerations arising from the tropicalization of the full
flag varieties and embedded in a
product of Grassmannians. For and we
compare toric degenerations arising from string polytopes and the FFLV polytope
with those obtained from the tropicalization of the flag varieties. We also
present a general procedure to find toric degenerations in the cases where the
initial ideal arising from a cone of the tropicalization of a variety is not
prime.Comment: 35 pages, 6 figure
Rational hypergeometric functions
Multivariate hypergeometric functions associated with toric varieties were introduced by Gel\u27fand, Kapranov and Zelevinsky. Singularities of such functions are discriminants, that is, divisors projectively dual to torus orbit closures. We show that most of these potential denominators never appear in rational hypergeometric functions. We conjecture that the denominator of any rational hypergeometric function is a product of resultants, that is, a product of special discriminants arising from Cayley configurations. This conjecture is proved for toric hypersurfaces and for toric varieties of dimension at most three. Toric residues are applied to show that every toric resultant appears in the denominator of some rational hypergeometric function
Bilinear identities on Schur symmetric functions
A series of bilinear identities on the Schur symmetric functions is obtained
with the use of Pluecker relations.Comment: Accepted to Journal of Nonlinear Mathematical Physics. A reference to
a connected result is adde
Effective Invariant Theory of Permutation Groups using Representation Theory
Using the theory of representations of the symmetric group, we propose an
algorithm to compute the invariant ring of a permutation group. Our approach
have the goal to reduce the amount of linear algebra computations and exploit a
thinner combinatorial description of the invariant ring.Comment: Draft version, the corrected full version is available at
http://www.springer.com
- …