356 research outputs found

    Algebraic Unimodular Counting

    Full text link
    We study algebraic algorithms for expressing the number of non-negative integer solutions to a unimodular system of linear equations as a function of the right hand side. Our methods include Todd classes of toric varieties via Gr\"obner bases, and rational generating functions as in Barvinok's algorithm. We report polyhedral and computational results for two special cases: counting contingency tables and Kostant's partition function.Comment: 21 page

    Algebraic Systems Biology: A Case Study for the Wnt Pathway

    Full text link
    Steady state analysis of dynamical systems for biological networks give rise to algebraic varieties in high-dimensional spaces whose study is of interest in their own right. We demonstrate this for the shuttle model of the Wnt signaling pathway. Here the variety is described by a polynomial system in 19 unknowns and 36 parameters. Current methods from computational algebraic geometry and combinatorics are applied to analyze this model.Comment: 24 pages, 2 figure

    Effective Invariant Theory of Permutation Groups using Representation Theory

    Get PDF
    Using the theory of representations of the symmetric group, we propose an algorithm to compute the invariant ring of a permutation group. Our approach have the goal to reduce the amount of linear algebra computations and exploit a thinner combinatorial description of the invariant ring.Comment: Draft version, the corrected full version is available at http://www.springer.com

    Computing toric degenerations of flag varieties

    Get PDF
    We compute toric degenerations arising from the tropicalization of the full flag varieties F4\mathcal{F}\ell_4 and F5\mathcal{F}\ell_5 embedded in a product of Grassmannians. For F4\mathcal{F}\ell_4 and F5\mathcal{F}\ell_5 we compare toric degenerations arising from string polytopes and the FFLV polytope with those obtained from the tropicalization of the flag varieties. We also present a general procedure to find toric degenerations in the cases where the initial ideal arising from a cone of the tropicalization of a variety is not prime.Comment: 35 pages, 6 figure

    Bilinear identities on Schur symmetric functions

    Full text link
    A series of bilinear identities on the Schur symmetric functions is obtained with the use of Pluecker relations.Comment: Accepted to Journal of Nonlinear Mathematical Physics. A reference to a connected result is adde

    New and Old Results in Resultant Theory

    Full text link
    Resultants are getting increasingly important in modern theoretical physics: they appear whenever one deals with non-linear (polynomial) equations, with non-quadratic forms or with non-Gaussian integrals. Being a subject of more than three-hundred-year research, resultants are of course rather well studied: a lot of explicit formulas, beautiful properties and intriguing relationships are known in this field. We present a brief overview of these results, including both recent and already classical. Emphasis is made on explicit formulas for resultants, which could be practically useful in a future physics research.Comment: 50 pages, 15 figure

    Affine semigroups having a unique Betti element

    Full text link
    We characterize affine semigroups having one Betti element and we compute some relevant non-unique factorization invariants for these semigroups. As an example, we particularize our description to numerical semigroups.Comment: 8 pages, 1 figure. To appear in Journal of Algebra and its Application
    corecore