442 research outputs found

    The Dearth of z~10 Galaxies in all HST Legacy Fields -- The Rapid Evolution of the Galaxy Population in the First 500 Myr

    Get PDF
    We present an analysis of all prime HST legacy fields spanning >800 arcmin^2 for the search of z~10 galaxy candidates and the study of their UV luminosity function (LF). In particular, we present new z~10 candidates selected from the full Hubble Frontier Field (HFF) dataset. Despite the addition of these new fields, we find a low abundance of z~10 candidates with only 9 reliable sources identified in all prime HST datasets that include the HUDF09/12, the HUDF/XDF, all the CANDELS fields, and now the HFF survey. Based on this comprehensive search, we find that the UV luminosity function decreases by one order of magnitude from z~8 to z~10 at all luminosities over a four magnitude range. This also implies a decrease of the cosmic star-formation rate density by an order of magnitude within 170 Myr from z~8 to z~10. We show that this accelerated evolution compared to lower redshift can entirely be explained by the fast build-up of the dark matter halo mass function at z>8. Consequently, the predicted UV LFs from several models of galaxy formation are in good agreement with this observed trend, even though the measured UV LF lies at the low end of model predictions. In particular, the number of only 9 observed candidate galaxies is lower, by ~50%, than predicted by galaxy evolution models. The difference is generally still consistent within the Poisson and cosmic variance uncertainties. However, essentially all models predict larger numbers than observed. We discuss the implications of these results in light of the upcoming James Webb Space Telescope mission, which is poised to find much larger samples of z~10 galaxies as well as their progenitors at less than 400 Myr after the Big Bang.Comment: 13 pages, 6 figures, minor updates to match accepted versio

    Extremely Small Sizes for Faint z~2-8 Galaxies in the Hubble Frontier Fields: A Key Input For Establishing their Volume Density and UV Emissivity

    Get PDF
    We provide the first observational constraints on the sizes of the faintest galaxies lensed by the Hubble Frontier Fields (HFF) clusters. Ionizing radiation from faint galaxies likely drives cosmic reionization, and the HFF initiative provides a key opportunity to find such galaxies. Yet, we cannot really assess their ionizing emissivity without a robust measurement of their sizes, since this is key to quantifying both their prevalence and the faint-end slope to the UV luminosity function. Here we provide the first such size constraints with 2 new techniques. The first utilizes the fact that the detectability of highly-magnified galaxies as a function of shear is very dependent on a galaxy's size. Only the most compact galaxies will remain detectable in regions of high shear (vs. a larger detectable size range for low shear), a phenomenon we carefully quantify using simulations. Remarkably, however, no correlation is found between the surface density of faint galaxies and the predicted shear, using 87 faint high-magnification mu>10 z~2-8 galaxies seen behind the first 4 HFF clusters. This can only be the case if such faint (~-15 mag) galaxies have significantly smaller sizes than luminous galaxies. We constrain their half-light radii to be <~30 mas (<160-240 pc). As a 2nd size probe, we rotate and stack 26 faint high-magnification sources along the major shear axis. Less elongation is found than even for objects with an intrinsic half-light radius of 10 mas. Together these results indicate that extremely faint z~2-8 galaxies have near point-source profiles in the HFF dataset (half-light radii conservatively <30 mas and likely 5-10 mas). These results suggest smaller completeness corrections and hence much lower volume densities for faint z~2-8 galaxies and shallower faint-end slopes than have been derived in many recent studies (by factors of ~2-3 and by dalpha>~0.1-0.3).Comment: 19 pages, 15 figures, 3 tables, accepted for publication in Ap

    Spectrophotometric Redshifts. A New Approach to the Reduction of Noisy Spectra and its Application to GRB090423

    Get PDF
    We have developed a new method, close in philosophy to the photometric redshift technique, which can be applied to spectral data of very low signal-to-noise ratio. Using it we intend to measure redshifts while minimising the dangers posed by the usual extraction techniques. GRB afterglows have generally very simple optical spectra over which the separate effects of absorption and reddening in the GRB host, the intergalactic medium, and our own Galaxy are superimposed. We model all these effects over a series of template afterglow spectra to produce a set of clean spectra that reproduce what would reach our telescope. We also model carefully the effects of the telescope-spectrograph combination and the properties of noise in the data, which are then applied on the template spectra. The final templates are compared to the two-dimensional spectral data, and the basic parameters (redshift, spectral index, Hydrogen absorption column) are estimated using statistical tools. We show how our method works by applying it to our data of the NIR afterglow of GRB090423. At z ~ 8.2, this was the most distant object ever observed. We use the spectrum taken by our team with the Telescopio Nazionale Galileo to derive the GRB redshift and its intrinsic neutral Hydrogen column density. Our best fit yields z=8.4^+0.05/-0.03 and N(HI)<5x10^20 cm^-2, but with a highly non-Gaussian uncertainty including the redshift range z [6.7, 8.5] at the 2-sigma confidence level. Our method will be useful to maximise the recovered information from low-quality spectra, particularly when the set of possible spectra is limited or easily parameterisable while at the same time ensuring an adequate confidence analysis.Comment: 6 pages, 6 figures. Accepted for publication in Astronomy and Astrophysic

    Factors affecting the patterns of total amount and proportions of leukocytes in Bovine milk

    Get PDF
    Differential leukocyte count (DSCC) in milk is considered important to improve knowledge of udder immune response. The investigations on milk DSCC were limited by the techniques available until recently, when a high-throughput tool to perform DSCC opened the way to explore these factors in rapid and economically sustainable ways. We hypothesized that DSCC alone does not fully describe the pattern of these cells, since the total amount is also influenced by milk yield and SCC. Therefore, this study was designed to describe DSCC and total amount of different leukocytes in milk during the course of lactation in cows differing in parity and in levels of SCC. This study considered 17,939 individual milk tests from 12 dairy herds in Lombardy Region, where DCC testing was applied in the period of February 2018\u2013December 2019 (23 months). The samples were divided into two subsets\u2014\u201chealthy\u201d (HS) with SCC 64200,000 cells/mL and \u201cinflamed\u201d (IS) with SCC >200,000 cells/mL. Cow in HS have a P + LT average between 5.0 7 108 and 3.0 7 109 cells. In IS cows, the values were 1.6 7 1010 and 2.5 7 1010. Therefore, the presence of a well-defined inflammatory process increased the overall amount of polymorphonuclear neutrophils (PMN) and lymphocytes (LYM) of 1 log, from 1 7 109 to 1 7 1010. The assessment of the total amount of PMN and LYM, to our knowledge, have never been reported in scientific literature; the values observed may be proposed as benchmarks for studies on udder immune response. When data were analyzed by days in milk (DIM),they showed that cows in first and second lactation have a significantly lower amount of PMN + LYM, when compared to cows in third and higher lactation. However, these differences are numerically not very large (7%), and suggest that, in healthy animals, the number of immune cells is kept as constant as possible. In IS, the analysis of trends based on DIM showed that both DSCC and P + LT have a significant negative trend. These data suggest that only in this group, the presence of high SCC as lactation proceeds is associated with a progressive increase in the number of macrophages. To the best of our knowledge, this is the first study describing the pattern of DSCC and the total amount of PMN + LYM in relation to parity, days in milk, and SCC, and it may be considered as the first contribution in the investigation on mammary gland immune response by the means of differential cell counts in milk

    Microbial biodiversity of the liquid fraction of rumen content from lactating cows

    Get PDF
    Host and dietary interactions with the rumen microbiome can affect the efficacy of supplements, and their effect on the composition of the bacterial population is still unknown. A 16S rRNA metagenomic approach and Next-Generation Sequencing (NGS) technology were used to investigate the bacterial microbiome composition in the liquid fraction of the rumen content collected via stomach tubing. To investigate biodiversity, samples were taken from three groups of four lactating dairy cows given a supplement of either 50 g of potato protein (Ctrl group), or 50 g of lyophilized Saccharomyces cerevisiae (LY group) or 50 g of dried S. cerevisiae (DY group) in a potato protein support. Rumen samples were collected after 15 days of dietary treatments and milk production was similar between the three groups. Taxonomic distribution analysis revealed a prevalence of the Firmicutes phylum in all cows (79.76%) and a significantly ( P<0.05) higher presence of the genus Bacillus in the DY group. Volatile fattyacid concentration was not significantly different between groups, possibly because of relatively high inter-animal variability or limited effect of the treatments or both, and the correlation analysis with bacterial taxa showed significant associations, in particular between many Firmicutes genera and butyrate. Limited differences were observed between dietary treatments, but the lack of microbiome data before yeast administration does not allow to draw firm conclusions on the effect of dietary treatments

    The GREATS Hβ\beta+[OIII] Luminosity Function and Galaxy Properties at z8\mathbf{z\sim8}: Walking the Way of JWST

    Get PDF
    The James Webb Space Telescope will allow to spectroscopically study an unprecedented number of galaxies deep into the reionization era, notably by detecting [OIII] and Hβ\beta nebular emission lines. To efficiently prepare such observations, we photometrically select a large sample of galaxies at z8z\sim8 and study their rest-frame optical emission lines. Combining data from the GOODS Re-ionization Era wide-Area Treasury from Spitzer (GREATS) survey and from HST, we perform spectral energy distribution (SED) fitting, using synthetic SEDs from a large grid of photoionization models. The deep Spitzer/IRAC data combined with our models exploring a large parameter space enables to constrain the [OIII]+Hβ\beta fluxes and equivalent widths for our sample, as well as the average physical properties of z8z\sim8 galaxies, such as the ionizing photon production efficiency with log(ξion/erg1Hz)25.77\log(\xi_\mathrm{ion}/\mathrm{erg}^{-1}\hspace{1mm}\mathrm{Hz})\geq25.77. We find a relatively tight correlation between the [OIII]+Hβ\beta and UV luminosity, which we use to derive for the first time the [OIII]+Hβ\beta luminosity function (LF) at z8z\sim8. The z8z\sim8 [OIII]+Hβ\beta LF is higher at all luminosities compared to lower redshift, as opposed to the UV LF, due to an increase of the [OIII]+Hβ\beta luminosity at a given UV luminosity from z3z\sim3 to z8z\sim8. Finally, using the [OIII]+Hβ\beta LF, we make predictions for JWST/NIRSpec number counts of z8z\sim8 galaxies. We find that the current wide-area extragalactic legacy fields are too shallow to use JWST at maximal efficiency for z8z\sim8 spectroscopy even at 1hr depth and JWST pre-imaging to 30\gtrsim30 mag will be required.Comment: 13 pages, 9 figures, accepted for publication in MNRA

    Newly Discovered Bright z~9-10 Galaxies and Improved Constraints on Their Prevalence Using the Full CANDELS Area

    Full text link
    We report the results of an expanded search for z~9-10 candidates over the ~883 arcmin^2 CANDELS+ERS fields. This study adds 147 arcmin^2 to the search area we consider over the CANDELS COSMOS, UDS, and EGS fields, while expanding our selection to include sources with bluer J_{125}-H_{160} colors than our previous J_{125}-H_{160}>0.5 mag selection. In searching for new z~9-10 candidates, we make full use of all available HST, Spitzer/IRAC, and ground-based imaging data. As a result of our expanded search and use of broader color criteria, 3 new candidate z~9-10 galaxies are identified. We also find again the z=8.683 source previously confirmed by Zitrin+2015. This brings our sample of probable z~9-11 galaxy candidates over the CANDELS+ERS fields to 19 sources in total, equivalent to 1 candidate per 47 arcmin^2 (1 per 10 WFC3/IR fields). To be comprehensive, we also discuss 28 mostly lower likelihood z~9-10 candidates, including some sources that seem to be reliably at z>8 using the HST+IRAC data alone, but which the ground-based data show are much more likely at z<4. One case example is a bright z~9.4 candidate COS910-8 which seems instead to be at z~2. Based on this expanded sample, we obtain a more robust LF at z~9 and improved constraints on the volume density of bright z~9 and z~10 galaxies. Our improved z~9-10 results again reinforce previous findings for strong evolution in the UV LF at z>8, with a factor of ~10 evolution seen in the luminosity density from z~10 to z~8.Comment: 22 pages, 12 figures, 6 tables, accepted for publication in the Astrophysical Journa

    Dependence of galaxy clustering on UV-luminosity and stellar mass at z47z \sim 4 - 7

    Get PDF
    We investigate the dependence of galaxy clustering at z47z \sim 4 - 7 on UV-luminosity and stellar mass. Our sample consists of \sim 10,000 Lyman-break galaxies (LBGs) in the XDF and CANDELS fields. As part of our analysis, the MMUVM_\star - M_{\rm UV} relation is estimated for the sample, which is found to have a nearly linear slope of dlog10M/dMUV0.44d\log_{10} M_\star / d M_{\rm UV} \sim 0.44. We subsequently measure the angular correlation function and bias in different stellar mass and luminosity bins. We focus on comparing the clustering dependence on these two properties. While UV-luminosity is only related to recent starbursts of a galaxy, stellar mass reflects the integrated build-up of the whole star formation history, which should make it more tightly correlated with halo mass. Hence, the clustering segregation with stellar mass is expected to be larger than with luminosity. However, our measurements suggest that the segregation with luminosity is larger with 90%\simeq 90\% confidence (neglecting contributions from systematic errors). We compare this unexpected result with predictions from the \textsc{Meraxes} semi-analytic galaxy formation model. Interestingly, the model reproduces the observed angular correlation functions, and also suggests stronger clustering segregation with luminosity. The comparison between our observations and the model provides evidence of multiple halo occupation in the small scale clustering.Comment: 10 pages, 6 figures, 2 tables, accepted for publication in MNRA
    corecore