362 research outputs found

    Mobile Computing in Physics Analysis - An Indicator for eScience

    Full text link
    This paper presents the design and implementation of a Grid-enabled physics analysis environment for handheld and other resource-limited computing devices as one example of the use of mobile devices in eScience. Handheld devices offer great potential because they provide ubiquitous access to data and round-the-clock connectivity over wireless links. Our solution aims to provide users of handheld devices the capability to launch heavy computational tasks on computational and data Grids, monitor the jobs status during execution, and retrieve results after job completion. Users carry their jobs on their handheld devices in the form of executables (and associated libraries). Users can transparently view the status of their jobs and get back their outputs without having to know where they are being executed. In this way, our system is able to act as a high-throughput computing environment where devices ranging from powerful desktop machines to small handhelds can employ the power of the Grid. The results shown in this paper are readily applicable to the wider eScience community.Comment: 8 pages, 7 figures. Presented at the 3rd Int Conf on Mobile Computing & Ubiquitous Networking (ICMU06. London October 200

    Drift Calculations on the Modulation of Anomalous Cosmic Rays During the 1998 Solar Minimum Period

    Get PDF
    We present full-drift solutions of the two-dimensional cosmic ray transport equation in an ongoing study to explain ACR observations made in the outer heliosphere. Calculated spectra are compared to 1998 ACR H, He, 0, N, and Ne observations from Voyager I and 2. It is found that the modulation is dominated by diffusion at the spacecraft positions and that the spectra of all the above species can be reasonably explained using a single set of modulation parameters. These include diffusion mean free paths with a magnitude significantly smaller at the shock than at the spacecraft positions

    Testing Binary Population Synthesis Models with Hot Subdwarfs

    Full text link
    Models of binary star interactions have been successful in explaining the origin of field hot subdwarf (sdB) stars in short period systems, but longer-period systems that formed via Roche-lobe overflow (RLOF) mass transfer from the present sdB to its companion have received less attention. We map sets of initial binaries into present-day binaries that include sdBs and main-sequence stars, distinguishing "observable" sdBs from "hidden" ones. We aim to find out whether (1) the existing catalogues of sdBs are sufficiently fair samples of all the kinds of sdB binaries that theory predicts; or instead whether (2) large predicted hidden populations mandate the construction of new catalogues, perhaps using wide-field imaging surveys such as 2MASS, SDSS, and Galex. We also report on a pilot study to identify hidden subdwarfs, using 2MASS and GALEX data.Comment: 3 pages with 2 figures. Uses AIP style files. To appear in Future Directions in Ultraviolet Astronomy, ed. Michael E. VanSteenberg (AIP Conf Proc

    Composition of Anomalous Cosmic Rays and Other Ions from Voyager Observations

    Get PDF
    We present energy spectra of eleven cosmic ray elements with energies from rv5 to rv500 MeV/nuc using data obtained from the Voyager spacecraft in the outer heliosphere from early 1993 to the end of 1998. The lowenergy intensity increases observed in all these spectra are consistent with the shapes expected to be exhibited by primarily singly-charged anomalous cosmic rays (ACRs). One of these elements is Na, which is being reported as a member of the ACR component for the first time. We find that the intensity increase below rv 10 Me V /nuc in the Si spectrum in the outer heliosphere is not dominated by re-accelerated solar wind. There is also evidence for a non-ACR component in the energy spectra of Mg, Si, and S observed at 1 AU by the Wind spacecraft below rv5 MeV/nuc. We see evidence in the energy spectra of Ar in both the inner and outer heliosphere for multiply-charged ACRs above rv360 MeV. Using a fit to the ACR intensities with a full-drift, two-dimensional numerical model of the acceleration and propagation of singly-charged ACRs, we present a table of the relative abundances of the seed particles of eleven elements at the solar wind termination shock

    Control methods for Dermanyssus gallinae in systems for laying hens: results of an international seminar

    Get PDF
    This paper reports the results of a seminar on poultry red mite (PRM), Dermanyssus gallinae. Eighteen researchers from eight European countries discussed life cycle issues of the mite, effects of mites on hens and egg production, and monitoring and control methods for PRM in poultry facilities. It was determined that PRM probably causes more damage than envisaged, with the cost in The Netherlands alone reaching 11 million euro per annum. However a great deal is still unknown about PRM (e.g. reproduction, survival methods, etc.) and that PRM monitoring is an important instrument in recognising and admitting the problem and in taking timely measures. Currently, the most promising control method combines heating the hen house in combination with chemical treatments. Future areas of development which show promise include the use of entomopathogenic fungi, vaccination and predatory mites. The final aim is to solve the problem of D. gallinae in housing systems for laying hens

    THE PATIENT-SPECIFIC INJURY SCORE: PRECISION MEDICINE IN TRAUMA PATIENTS PREDICTS ORGAN DYSFUNCTION AND OUTCOMES

    Get PDF
    poster abstractIntroduction: Current injury scoring systems in polytraumatized patients are limited at predicting patient outcomes. We present a novel method that quantifies mechanical tissue damage and cumulative hypoperfusion using a precision medicine approach. We hypothesized that a Patient-Specific Injury score formulated from individualized injury indices would stratify patient risk for developing organ dysfunction after injury. We compared correspondence between PSI and the Injury Severity Score with outcomes of organ dysfunction and MOF. Methods: Fifty Multiply-injured-patients (MIPs) were studied. Tissue Damage Volume scores were measured from admission pan-axial CT scans using purpose-designed post-processing software to quantify volumetric magnitude and distribution of injuries. Ischemic injury was quantified using Shock Volumes. SV is a time-magnitude integration of shock index. Values above 0.9 were measured in the 24-hours after injury. Metabolic response was quantified by subtracting the lowest first 24 hr pH from 7.40. PSI combines these indices into the formula: PSI=[0.2TDV+SV]*MR. Correspondence coefficients from regression modeling between PSI and organ dysfunction, measured by the Marshall Multiple Organ Dysfunction score averaged from days 2-5 post-injury, were compared to similar regression models of ISS vs. day 2-5 MOD-scores. We compared PSI and ISS in patients that did or did not develop MOF. Results: PSI demonstrated better correlation to organ dysfunction (r2=0.576) in comparison to ISS (r2=0.393) using the MOD-score on days 2-5. Mean PSI increased 3.4x(58.5vs.17.0;p<0.02) and ISS scores increased 1.4x(39.0vs.28.0;p=0.10) in patients that developed MOF versus those that did not. Conclusions: This study shows that a precision medicine approach that integrates patient-specific indices of mechanical tissue damage, ischemic tissue injury, and metabolic response better corresponds to phenotypic changes including organ dysfunction and MOF compared to ISS in MIPs. The PSI-score can be calculated within 24 hours of injury, making it useful for stratifying risk and predicting the magnitude of organ dysfunction to anticipate

    Distributed Computing Grid Experiences in CMS

    Get PDF
    The CMS experiment is currently developing a computing system capable of serving, processing and archiving the large number of events that will be generated when the CMS detector starts taking data. During 2004 CMS undertook a large scale data challenge to demonstrate the ability of the CMS computing system to cope with a sustained data-taking rate equivalent to 25% of startup rate. Its goals were: to run CMS event reconstruction at CERN for a sustained period at 25 Hz input rate; to distribute the data to several regional centers; and enable data access at those centers for analysis. Grid middleware was utilized to help complete all aspects of the challenge. To continue to provide scalable access from anywhere in the world to the data, CMS is developing a layer of software that uses Grid tools to gain access to data and resources, and that aims to provide physicists with a user friendly interface for submitting their analysis jobs. This paper describes the data challenge experience with Grid infrastructure and the current development of the CMS analysis system

    Vlasov

    Get PDF

    The CMS Integration Grid Testbed

    Get PDF
    The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distrib ution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuo us two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. In this paper, we describe the process that led to one of the world's first continuously available, functioning grids.Comment: CHEP 2003 MOCT01
    corecore