3,395 research outputs found
Microscopic calculations and energy expansions for neutron-rich matter
We investigate asymmetric nuclear matter with two- and three-nucleon
interactions based on chiral effective field theory, where three-body forces
are fit only to light nuclei. Focusing on neutron-rich matter, we calculate the
energy for different proton fractions and include estimates of the theoretical
uncertainty. We use our ab-initio results to test the quadratic expansion
around symmetric matter with the symmetry energy term, and confirm its validity
for highly asymmetric systems. Our calculations are in remarkable agreement
with an empirical parametrization for the energy density. These findings are
very useful for astrophysical applications and for developing new equations of
state.Comment: 15 pages, 9 figures, published versio
Toward the Ab-initio Description of Medium Mass Nuclei
As ab-initio calculations of atomic nuclei enter the A=40-100 mass range, a
great challenge is how to approach the vast majority of open-shell (degenerate)
isotopes. We add realistic three-nucleon interactions to the state of the art
many-body Green's function theory of closed-shells, and find that physics of
neutron driplines is reproduced with very good quality. Further, we introduce
the Gorkov formalism to extend ab-initio theory to semi-magic, fully
open-shell, isotopes. Proof-of-principle calculations for Ca-44 and Ni-74
confirm that this approach is indeed feasible. Combining these two advances
(open-shells and three-nucleon interactions) requires longer, technical, work
but it is otherwise within reach.Comment: Contribution to Summary Report of EURISOL Topical and Town Meetings,
15-19 October 2012; missing affiliations added and corrected errors in Tab
Stochastic Resonance: influence of a noise spectrum
Here, in order to study \textit{stochastic resonance} (SR) in a double-well
potential when the noise source has a spectral density of the form
with varying , we have extended a procedure, introduced
by Kaulakys et al (Phys. Rev. E \textbf{70}, 020101 (2004)). In order to have
an analytical understanding of the results, we have obtained an effective
Markovian approximation, that allows us to make a systematic study of the
effect of such kind of noises on the SR phenomenon. The comparison of numerical
and analytical results shows an excellent qualitative agreement indicating that
the effective Markovian approximation is able to correctly describe the general
trends.Comment: 11 pages, 6 figures, submitted to Euro.Phys.J.
- …
