30,017 research outputs found
Turbo-Aggregate: Breaking the Quadratic Aggregation Barrier in Secure Federated Learning
Federated learning is a distributed framework for training machine learning
models over the data residing at mobile devices, while protecting the privacy
of individual users. A major bottleneck in scaling federated learning to a
large number of users is the overhead of secure model aggregation across many
users. In particular, the overhead of the state-of-the-art protocols for secure
model aggregation grows quadratically with the number of users. In this paper,
we propose the first secure aggregation framework, named Turbo-Aggregate, that
in a network with users achieves a secure aggregation overhead of
, as opposed to , while tolerating up to a user dropout
rate of . Turbo-Aggregate employs a multi-group circular strategy for
efficient model aggregation, and leverages additive secret sharing and novel
coding techniques for injecting aggregation redundancy in order to handle user
dropouts while guaranteeing user privacy. We experimentally demonstrate that
Turbo-Aggregate achieves a total running time that grows almost linear in the
number of users, and provides up to speedup over the
state-of-the-art protocols with up to users. Our experiments also
demonstrate the impact of model size and bandwidth on the performance of
Turbo-Aggregate
Amorphous metallic films in silicon metallization systems
The general objective was to determine the potential of amorphous metallic thin films as a means of improving the stability of metallic contacts to a silicon substrate. The specific objective pursued was to determine the role of nitrogen in the formation and the resulting properties of amorphous thin-film diffusion barriers. Amorphous metallic films are attractive as diffusion barriers because of the low atomic diffusivity in these materials. Previous investigations revealed that in meeting this condition alone, good diffusion barriers are not necessarily obtained, because amorphous films can react with an adjacent medium (e.g., Si, Al) before they recrystallize. In the case of a silicon single-crystalline substrate, correlation exists between the temperature at which an amorphous metallic binary thin film reacts and the temperatures at which the films made of the same two metallic elements react individually. Amorphous binary films made of Zr and W were investigated. Both react with Si individually only at elevated temperatures. It was confirmed that such films react with Si only above 700 C when annealed in vacuum for 30 min. Amorphous W-N films were also investigated. They are more stable as barriers between Al and Si than polycrystalline W. Nitrogen effectively prevents the W-Al reaction that sets in at 500 C with polycrystalline W
Characteristics of inhomogeneous jets in confined swirling air flows
An experimental program to study the characteristics of inhomogeneous jets in confined swirling flows to obtain detailed and accurate data for the evaluation and improvement of turbulent transport modeling for combustor flows is discussed. The work was also motivated by the need to investigate and quantify the influence of confinement and swirl on the characteristics of inhomogeneous jets. The flow facility was constructed in a simple way which allows easy interchange of different swirlers and the freedom to vary the jet Reynolds number. The velocity measurements were taken with a one color, one component DISA Model 55L laser-Doppler anemometer employing the forward scatter mode. Standard statistical methods are used to evaluate the various moments of the signals to give the flow characteristics. The present work was directed at the understanding of the velocity field. Therefore, only velocity and turbulence data of the axial and circumferential components are reported for inhomogeneous jets in confined swirling air flows
Chromium silicide formation by ion mixing
The formation of CrSi_2 by ion mixing was studied as a function of temperature, silicide thickness and irradiated interface. Samples were prepared by annealing evaporated couples of Cr on Si and Si on Cr at 450°C for short times to form Si/CrSi_2/Cr sandwiches. Xenon beams with energies up to 300 keV and fluences up to 8 X 10^15 cm^(-2) were used for mixing at temperatures between 20 and
300°C. Penetrating only the Cr/CrSi_2 interface at temperatures above 150°C induces further growth of the silicide as a uniform stoichiometric layer. The growth rate does not depend on the thickness of the initially formed silicide at least up to a thickness of 150 nm. The amount of growth depends linearly on the density of energy deposited at the interface. The growth is temperature
dependent with an apparent activation energy of 0.2 eV. Irradiating only through the Si/CrSi_2 interface does not induce silicide growth. We conclude that the formation of CrSi_2 by ion beam mixing is an interface-limited process and that the limiting reaction occurs at the Cr/CrSi_2 interface
Gravitational energy in a small region for the modified Einstein and Landau-Lifshitz pseudotensors
The purpose of the classical Einstein and Landau-Lifshitz pseudotensors is
for determining the gravitational energy. Neither of them can guarantee a
positive energy in holonomic frames. In the small sphere approximation, it has
been required that the quasilocal expression for the gravitational
energy-momentum density should be proportional to the Bel-Robinson tensor
. However, we propose a new tensor
which is the sum of certain tensors
and , it has certain properties
so that it gives the same gravitational "energy-momentum" content as
does. Moreover, we show that a modified Einstein
pseudotensor turns out to be one of the Chen-Nester quasilocal expressions,
while the modified Landau-Lifshitz pseudotensor becomes the Papapetrou
pseudotensor; these two modified pseudotensors have positive gravitational
energy in a small region.Comment:
Neue Erkenntnisse zur Pathophysiologie und Therapie der Gicht
Zusammenfassung: Gicht wird durch die Ablagerung von Mononatriumurat- (MNU-)Kristallen im Gewebe verursacht, durch die eine lokale Entzündungsreaktion ausgelöst wird. Bei älteren Menschen ist sie die häufigste entzündliche Gelenkerkrankung. Die Bildung von MNU-Kristallen wird durch eine Hyperurikämie begünstigt. In den letzten beiden Jahrzehnten war eine deutliche Zunahme von Hyperurikämie und Gicht zu verzeichnen. Beim metabolischen Syndrom ist der Trend ähnlich. Neuere Studien geben Einblick in den Harnsäurestoffwechsel der Niere sowie Hinweise auf einen möglichen Zusammenhang zwischen Hyperurikämie und Hypertonie. MNU-Kristalle verursachen eine Entzündung, indem sie Leukozyten zur Produktion inflammatorischer Zytokine und anderer Entzündungsmediatoren anregen. Bei der Aufnahme von MNU-Kristallen durch Monozyten sind Wechselwirkungen mit den "Toll-like-Rezeptoren" (TLR) 2 und 4 sowie CD14 beteiligt, die Bestandteil des angeborenen Immunsystems sind. Intrazellulär aktivieren MNU-Kristalle das Inflammasom, das inaktives Pro-Interleukin- (IL-)1 in aktives IL-1β überführt. Die inflammatorischen Wirkungen von MNU sind IL-1-abhängig und können durch IL-1-Inhibitoren unterdrückt werden. Durch diese Erkenntnisse ergeben sich neue Ansätze in der Therapie von Hyperurikämie und Gich
WASH and Tsg101/ALIX-dependent diversion of stress-internalized EGFR from the canonical endocytic pathway
Stress exposure triggers ligand-independent EGF receptor (EGFR) endocytosis, but its post-endocytic fate and role in regulating signalling are unclear. We show that the p38 MAP kinase-dependent, EGFR tyrosine kinase (TK)-independent EGFR internalization induced by ultraviolet light C (UVC) or the cancer therapeutic cisplatin, is followed by diversion from the canonical endocytic pathway. Instead of lysosomal degradation or plasma membrane recycling, EGFR accumulates in a subset of LBPA-rich perinuclear multivesicular bodies (MVBs) distinct from those carrying EGF-stimulated EGFR. Stress-internalized EGFR co-segregates with exogenously expressed pre-melanosomal markers OA1 and fibrillar PMEL, following early endosomal sorting by the actin polymerization-promoting WASH complex. Stress-internalized EGFR is retained intracellularly by continued p38 activity in a mechanism involving ubiquitin-independent, ESCRT/ALIX-dependent incorporation onto intraluminal vesicles (ILVs) of MVBs. In contrast to the internalization-independent EGF-stimulated activation, UVC/cisplatin-triggered EGFR activation depends on EGFR internalization and intracellular retention. EGFR signalling from this MVB subpopulation delays apoptosis and might contribute to chemoresistance
New positive small vacuum region gravitational energy expressions
We construct an infinite number of new holonomic quasi-local gravitational
energy-momentum density pseudotensors with good limits asymptotically and in
small regions, both materially and in vacuum. For small vacuum regions they are
all a positive multiple of the Bel-Robinson tensor and consequently have
positive energy.Comment: 4 page
- …
