98 research outputs found
HET acid based oligoesters – TGA/FTIR studies
One of the important reactive halogenated dicarboxylic acids used in the synthesis of flame retardant unsaturated polyester resins is 1,4,5,6,7,7-hexachlorobicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid (HET acid). In the present investigation four different oligoesters are synthesized using HET acid as the diacid component and 1,2-ethane diol, 1,2-propane diol, 1,3-propane diol and 1,4-butane diol as the aliphatic diols. Melt condensation technique in vacuum is used for the synthesis of the oligoesters. The number average molecular weights of the oligoesters are determined using end group analysis. The degree of polymerization is estimated to be 3–5. The structural characterization is done using FTIR and NMR (1H and 13C) techniques. In the present investigation, TGA-FTIR studies for the different oligoesters are carried out in nitrogen atmosphere. The materials are heated from ambient to 600 °C at a heating rate of 20 °C/min. The main volatile products identified are CO, HCl, H2O, CO2, hexachlorocyclopentadiene and HET acid/anhydride. The evolution profile of these materials with respect to the structure of the oligoesters is discussed in detail and presented. The importance of β-hydrogens in the diol component and the plausible mechanism for the flame retardant behavior of these oligoesters are presented
Thermal Degradation Studies on PMMA–HET Acid Based Oligoesters Blends
Imparting thermal stability to polymethyl methacrylate (PMMA) without affecting its optical clarity is attempted by incorporating HET acid based oligoesters. Pure PMMA and PMMA containing five and 20 wt% of four different oligoesters are separately prepared using bulk polymerization. The thermal properties of the materials studied using DSC, TG, TG–FTIR and Pyr–GC–MS are presented. The main volatile degradation products identified are CO, HCl, CO2, H2O, hexachlorocyclopentadiene, hexachloroendomethylene tetrahydrophthalic acid/anhydride and methyl methacrylate. A detailed mechanism for the influence of the degradation products of HET acid based oligoesters on the thermal degradation of PMMA is also presented
Generating cadastral base for Kolathupalayam village in Tamil Nadu from high resolution LISS IV sensor data
In the present study an attempt was made to generate cadastral base from high resolution satellite image (LISS IV) and to integrate with land use land cover information. The digital cadastral map with survey number for Kolathupalayam village in Erode district of Tamil Nadu was scanned, digitized and parcels were extracted. Similarly parcels or field boundaries were digitized and extracted from satellite image and were statistically compared by area. The area obtained from both the source through digitization correlated well with a pearson correlation of 0.87 and it was significant at 5 per cent. Thus, the area comparisons from both methods are significant indicating boundaries of individual fields generated from satellite image matched well with the one generated from cadastral map. The cadastral base generated from satellite image was overlaid on the classified image (level III output) to identify and generate land cover information against each survey number. Thus, the LISS IV data can be used for the identification and extraction of cadastral boundaries with good accuracy
Sonocatalytic degradation of direct blue dye using semiconductor nanocatalyst
The toxic pollutants present in water should be treated by advanced oxidation processes (AOP). This investigation deals with study of sonocatalytic degradation of the prepared zinc oxide nanorods (ZnONR) under ultrasonic (US) irradiation for the degradation of Direct blue (DB71) dye molecule. ZnONR has been prepared by sol-gel method using zinc acetate and ammonia. The prepared ZnONR have been characterized using FT-IR, XRD, FE-SEM, HR-TEM, EDAX, AFM and BET techniques and found that the prepared catalyst is highly crystalline with hexagonal structured nano rods with Wurtzite crystal phase. In-situ generation of the OH. radicals has been analyzed by EPR technique. Preliminary experiments are conducted such as effects of pH, catalyst loading, dye concentration and effect of energy input to optimize suitable experimental conditions. Kinetics of sonocatalytic degradation of dye molecules have also been carried out and the reaction followed pseudo first-order kinetics. The interference of electrolytes on the degradation of dye molecules has also been carried out. Degradation of the dye molecules are examined by UV-Visible absorption, COD and TOC measurements. The by-products formation of the degraded samples has been analyzed by ESI-MS+ technique. The reusability of the catalyst for its efficiency and the degradation of real dye house effluents have also been teste
Novel homogeneous catalyst assisted sonocatalytic degradation of dye Direct Blue 71
Industrial effluents, particularly from dye industry, is one of the major causes of serious concern as it contaminates the environmental water resources and affect human health. Treatment of such contaminants is a challenging area of interest to researchers. In this context, here, we have explored degradation and mineralization of Direct Blue (DB71) dye in aqueous solution by means of ultrasound irradiation at a frequency of 25 kHz and its combination with a novel homogenous sonocatalyst is investigated. The following experiments have been conducted to achieve complete degradation of the dye molecule. In-situ generation of the radicals under ultrasonic irradiation is measured by EPR technique. The effects of various operational parameters such as the effects of pH, dye concentration, catalyst dosage, electrolytes, energy input and kinetics of oxidation processes on the degradation efficiency are studied. COD measurements are also carried out in order to evaluate the mineralization efficiency of DB71. The effect of electrolytes on dye degradation is studied with different inorganic electrolytes. The rate constant decreases with increasing dye concentration. The degradation increases with increasing catalyst concentration and decreases with increasing dye concentration. Sonocatalytic degradation of the dye molecules are observed by UV-visible absorption and TOC measurements. The by-products formation of the sonocalytically degraded dye samples are analyzed by ESI-MS+ analysis. The catalyst is also tested for its efficiency in the degradation of real dye house effluents
Novel homogeneous catalyst assisted sonocatalytic degradation of dye Direct Blue 71
1265-1272Industrial effluents, particularly from dye industry, is one of the major causes of serious concern as it contaminates the environmental water resources and affect human health. Treatment of such contaminants is a challenging area of interest to researchers. In this context, here, we have explored degradation and mineralization of Direct Blue (DB71) dye in aqueous solution by means of ultrasound irradiation at a frequency of 25 kHz and its combination with a novel homogenous sonocatalyst is investigated. The following experiments have been conducted to achieve complete degradation of the dye molecule. In-situ generation of the radicals under ultrasonic irradiation is measured by EPR technique. The effects of various operational parameters such as the effects of pH, dye concentration, catalyst dosage, electrolytes, energy input and kinetics of oxidation processes on the degradation efficiency are studied. COD measurements are also carried out in order to evaluate the mineralization efficiency of DB71. The effect of electrolytes on dye degradation is studied with different inorganic electrolytes. The rate constant decreases with increasing dye concentration. The degradation increases with increasing catalyst concentration and decreases with increasing dye concentration. Sonocatalytic degradation of the dye molecules are observed by UV-visible absorption and TOC measurements. The by-products formation of the sonocalytically degraded dye samples are analyzed by ESI-MS+ analysis. The catalyst is also tested for its efficiency in the degradation of real dye house effluents
Degradation of Orange G and Malachite green dyes under visible light irradiation: Double layered core-shell nanoparticle as an efficient photocatalyst
1259-1264Core-shell nanomaterials have emerged as a frontier area of focus in materials chemistry and catalysis. Here, we have explored the photocatalyst potential of a double layered core-shell material comprising a rare earth material as core and silica, zinc oxide as the subsequent shell materials. The prepared core-shell has average particle size of 40-60 nm, and the material has been characterized by FTIR, XRD, UV-DRS and FESEM techniques. The band gap energy of prepared material is 2.82 eV. The photocatalytic activity has been tested against Orange-G and Malachite green dye under visible light irradiation. A comparison for degradation of azo and non-azo dye has been elucidated. Preliminary studies with varying pH, catalyst dosage and initial dye concentration have been done to determine the optimum parameters for photocatalytic activity. The kinetic studies follow pseudo-first-order pathway. The prepared core-shell nanomaterial is found efficient for degradation of non-azo dye compared to azo dye. Both the materials show better activity than pristine ZnO. The photocatalyst is found to be environmentally benign with reusability even up to the third cycle of reuse
Gabapentin for chronic pelvic pain in women (GaPP2): a multicentre, randomised, double-blind, placebo-controlled trial
Background: Chronic pelvic pain affects 2–24% of women worldwide and evidence for medical treatments is scarce. Gabapentin is effective in treating some chronic pain conditions. We aimed to measure the efficacy and safety of gabapentin in women with chronic pelvic pain and no obvious pelvic pathology. Methods: We performed a multicentre, randomised, double-blind, placebo-controlled randomised trial in 39 UK hospital centres. Eligible participants were women with chronic pelvic pain (with or without dysmenorrhoea or dyspareunia) of at least 3 months duration. Inclusion criteria were 18–50 years of age, use or willingness to use contraception to avoid pregnancy, and no obvious pelvic pathology at laparoscopy, which must have taken place at least 2 weeks before consent but less than 36 months previously. Participants were randomly assigned in a 1:1 ratio to receive gabapentin (titrated to a maximum dose of 2700 mg daily) or matching placebo for 16 weeks. The online randomisation system minimised allocations by presence or absence of dysmenorrhoea, psychological distress, current use of hormonal contraceptives, and hospital centre. The appearance, route, and administration of the assigned intervention were identical in both groups. Patients, clinicians, and research staff were unaware of the trial group assignments throughout the trial. Participants were unmasked once they had provided all outcome data at week 16–17, or sooner if a serious adverse event requiring knowledge of the study drug occurred. The dual primary outcome measures were worst and average pain scores assessed separately on a numerical rating scale in weeks 13–16 after randomisation, in the intention-to-treat population. Self-reported adverse events were assessed according to intention-to-treat principles. This trial is registered with the ISRCTN registry, ISCRTN77451762. Findings: Participants were screened between Nov 30, 2015, and March 6, 2019, and 306 were randomly assigned (153 to gabapentin and 153 to placebo). There were no significant between-group differences in both worst and average numerical rating scale (NRS) pain scores at 13–16 weeks after randomisation. The mean worst NRS pain score was 7·1 (standard deviation [SD] 2·6) in the gabapentin group and 7·4 (SD 2·2) in the placebo group. Mean change from baseline was −1·4 (SD 2·3) in the gabapentin group and −1·2 (SD 2·1) in the placebo group (adjusted mean difference −0·20 [97·5% CI −0·81 to 0·42]; p=0·47). The mean average NRS pain score was 4·3 (SD 2·3) in the gabapentin group and 4·5 (SD 2·2) in the placebo group. Mean change from baseline was −1·1 (SD 2·0) in the gabapentin group and −0·9 (SD 1·8) in the placebo group (adjusted mean difference −0·18 [97·5% CI −0·71 to 0·35]; p=0·45). More women had a serious adverse event in the gabapentin group than in the placebo group (10 [7%] of 153 in the gabapentin group compared with 3 [2%] of 153 in the placebo group; p=0·04). Dizziness, drowsiness, and visual disturbances were more common in the gabapentin group. Interpretation: This study was adequately powered, but treatment with gabapentin did not result in significantly lower pain scores in women with chronic pelvic pain, and was associated with higher rates of side-effects than placebo. Given the increasing reports of abuse and evidence of potential harms associated with gabapentin use, it is important that clinicians consider alternative treatment options to off-label gabapentin for the management of chronic pelvic pain and no obvious pelvic pathology. Funding: National Institute for Health Research
- …