33 research outputs found

    Neuronal nitric oxide synthase contributes to the regulation of hematopoiesis

    Get PDF
    Nitric oxide (NO) signaling is important for the regulation of hematopoiesis. However, the role of individual NO synthase (NOS) isoforms is unclear. Our results indicate that the neuronal NOS isoform (nNOS) regulates hematopolesis in vitro and in vivo. nNOS is expressed in adult bone marrow and fetal liver and is enriched in stromal cells. There is a strong correlation between expression of nNOS in a panel of stromal cell lines established from bone marrow and fetal liver and the ability of these cell lines to support hematopoietic stem cells; furthermore, NO donor can further increase this ability. The number of colonies generated in vitro from the bone marrow and spleen of nNOS-null mutants is increased relative to wild-type or inducible- or endothelial NOS knockout mice. These results describe a new role for nNOS beyond its action in the brain and muscle and suggest a model where nNOS, expressed in stromal cells, produces NO which acts as a paracrine regulator of hematopoietic stem cells

    Enhanced expression of cyclooxygenase-2 and nuclear beta-catenin are related to mutations in the APC gene in human colorectal cancer

    No full text
    Mutational inactivation of the human tumour suppressor gene adenomatous polyposis coli (APC) results in constitutive activation of beta -catenin/T cell factor-4 (Tcf-4) mediated transcription of target genes. Up-regulation of cyclooxygenase-2 (COX-2) protein is frequently found in human colorectal cancer (CRC). We analysed 38 CRC for mutations in APC and beta -catenin and found an association between APC mutations and elevated COX-2 levels. Furthermore, APC mutations were predominantly observed in tumour tissues from the rectum compared to tumours of colonic origin. Western blot analysis revealed that nuclear beta -catenin levels were generally higher in tumours with APC mutations compared to tumours with wild type APC. However, there was also a higher level of nuclear beta -catenin in tumour compared to normal tissue, hut nuclear Tcf-4 protein was constitutively expressed in tumour and normal tissue and showed no differences. An identified putative Tcf-4 binding element in the COX-2 promoter may partly explain the enhanced level of COX-2 and support the idea that COX-2 may be a downstream target of the APC/beta -catenin/Tcf-4 pathway.</p

    Differences in retinol metabolism and proliferative response between neointimal and medial smooth muscle cells

    No full text
    Vascular disease is multifactorial and smooth muscle cells (SMCs) play a key role. Retinoids have been shown to influence many disease-promoting processes including proliferation and differentiation in the vessel wall. Phenotypic heterogeneity of vascular SMCs is a well-known phenomenon and phenotypic modulation of SMCs precedes intimal hyperplasia. The SMCs that constitute the intimal hyperplasia demonstrate a distinct phenotype and differ in gene expression compared to medial SMCs. Cellular retinol-binding protein-1 (CRBP-I), involved in retinoid metabolism, is highly expressed in intimal SMCs, indicating altered retinoid metabolism in this subset of cells. The aim of this study was to evaluate the metabolism of all-trans ROH (atROH), the circulating prohormone to active retinoids, in vascular SMCs of different phenotypes. The results show an increased uptake of atROH in intimal SMCs compared to medial SMCs as well as increased expression of the retinoid-metabolizing enzymes retinol clehydrogenase-5 and retinal dehydrogenase-1 and, in conjunction with this gene expression, increased production of all-trans retinoic acid (atRA). Furthermore, the retinoic acid-catabolizing enzyme CYP26A1 is expressed at higher levels in medial SMCs compared to intimal SMCs. Thus, both retinoid activation and deactivation processes are in operation. To analyze if the difference in ROH metabolism was also correlated to differences in the biological response to retinol, the effects of ROH on proliferation of SMCs with this phenotypic heterogeneity were studied. We found that intimal SMCs showed a dose- and time-dependent growth inhibition when treated with atROH in contrast to medial SMCs, in which atROH had a mitogenic effect. This study shows, for the first time, that (1) vascular SMCs are able to synthesize biologically active atRA from the prohormone atROH, (2) intimal SMCs have a higher capacity to internalize atROH and metabolize atROH into atRA compared to medial SMCs and (3) atROH inhibits growth of intimal SMCs, but induces medial SMC growth.</p

    Augmented expression of inducible NO synthase in vascular smooth muscle cells during aging is associated with enhanced NF-kappaB activation

    No full text
    Vascular smooth muscle cells (SMCs) are important targets for endothelium-derived nitric oxide (NO), but this production is attenuated in injured and diseased arteries and during aging. However, SMCs can produce NO themselves by expressing an inducible form of NO synthase (iNOS) under inflammatory conditions and in the repair process after arterial injury. We examined iNOS expression in SMCs derived from the aortic media of newborn, young adult, and old rats. Our results show that SMCs from newborn rats cannot produce significant amounts of NO on stimulation with interferon-gamma plus lipopolysaccharide or interleukin-1beta. In contrast, SMCs from old rats exhibit markedly enhanced iNOS activity. The difference in iNOS activity between the newborn and the old SMCs was closely correlated with levels of iNOS protein, mRNA, and gene promoter activity. Similarly, intercellular adhesion molecule-1 (ICAM-1) was also expressed more abundantly in the old than in the newborn SMCs in response to cytokines. Both iNOS and ICAM-1 are transcriptionally regulated by nuclear factor kappaB (NF-kappaB). Our data demonstrate an intense transactivation of NF-kappaB in old SMCs on tumor necrosis factor-alpha stimulation but only a weak one in newborn SMCs. The difference in the NF-kappaB activation could be explained by a much faster and more extensive IkappaBalpha degradation in old than in newborn SMCs. These data indicate that the capability to respond to proinflammatory stimuli by activating NF-kappaB differs between SMCs at different stages of development. This results in differential capability to express NF-kappaB-dependent genes such as iNOS and ICAM-1, which could have implications for host defense and the pathogenesis of vascular diseases
    corecore