14 research outputs found

    GeneCards Version 3: the human gene integrator

    Get PDF
    GeneCards (www.genecards.org) is a comprehensive, authoritative compendium of annotative information about human genes, widely used for nearly 15 years. Its gene-centric content is automatically mined and integrated from over 80 digital sources, resulting in a web-based deep-linked card for each of >73 000 human gene entries, encompassing the following categories: protein coding, pseudogene, RNA gene, genetic locus, cluster and uncategorized. We now introduce GeneCards Version 3, featuring a speedy and sophisticated search engine and a revamped, technologically enabling infrastructure, catering to the expanding needs of biomedical researchers. A key focus is on gene-set analyses, which leverage GeneCards’ unique wealth of combinatorial annotations. These include the GeneALaCart batch query facility, which tabulates user-selected annotations for multiple genes and GeneDecks, which identifies similar genes with shared annotations, and finds set-shared annotations by descriptor enrichment analysis. Such set-centric features address a host of applications, including microarray data analysis, cross-database annotation mapping and gene-disorder associations for drug targeting. We highlight the new Version 3 database architecture, its multi-faceted search engine, and its semi-automated quality assurance system. Data enhancements include an expanded visualization of gene expression patterns in normal and cancer tissues, an integrated alternative splicing pattern display, and augmented multi-source SNPs and pathways sections. GeneCards now provides direct links to gene-related research reagents such as antibodies, recombinant proteins, DNA clones and inhibitory RNAs and features gene-related drugs and compounds lists. We also portray the GeneCards Inferred Functionality Score annotation landscape tool for scoring a gene’s functional information status. Finally, we delineate examples of applications and collaborations that have benefited from the GeneCards suite

    Mutually facilitated dispersal between the nonmotile fungus Aspergillus fumigatus and the swarming bacterium Paenibacillus vortex

    No full text
    In the heterogeneous environment surrounding plant roots (the rhizosphere), microorganisms both compete and cooperate. Here, we show that two very different inhabitants of the rhizosphere, the nonmotile fungus Aspergillus fumigatus and the swarming bacterium Paenibacillus vortex, can facilitate each other's dispersal. A. fumigatus conidia (nonmotile asexual fungal spores) can be transported by P. vortex swarms over distances of at least 30 cm and at rates of up to 10.8 mm h−1. Moreover, conidia can be rescued and transported by P. vortex from niches of adverse growth conditions. Potential benefit to the bacteria may be in crossing otherwise impenetrable barriers in the soil: fungal mycelia seem to act as bridges to allow P. vortex to cross air gaps in agar plates. Transport of conidia was inhibited by proteolytic treatment of conidia or the addition of purified P. vortex flagella, suggesting specific contacts between flagella and proteins on the conidial surface. Conidia were transported by P. vortex into locations where antibiotics inhibited bacteria growth, and therefore, growth and sporulation of A. fumigatus were not limited by bacterial competition. Conidia from other fungi, similar in size to those fungi from A. fumigatus, were not transported as efficiently by P. vortex. Conidia from a range of fungi were not transported by another closely related rhizosphere bacterium, Paenibacillus polymyxa, or the more distantly related Proteus mirabilis, despite both being efficient swarmers

    Peripheral blood cellular dynamics of rheumatoid arthritis treatment informs about efficacy of response to disease modifying drugs

    No full text
    Abstract Rheumatoid arthritis (RA) is an autoimmune disease characterized by systemic inflammation and is mediated by multiple immune cell types. In this work, we aimed to determine the relevance of changes in cell proportions in peripheral blood mononuclear cells (PBMCs) during the development of disease and following treatment. Samples from healthy blood donors, newly diagnosed RA patients, and established RA patients that had an inadequate response to MTX and were about to start tumor necrosis factor inhibitors (TNFi) treatment were collected before and after 3 months of treatment. We used in parallel a computational deconvolution approach based on RNA expression and flow cytometry to determine the relative cell-type frequencies. Cell-type frequencies from deconvolution of gene expression indicate that monocytes (both classical and non-classical) and CD4+ cells (Th1 and Th2) were increased in RA patients compared to controls, while NK cells and B cells (naïve and mature) were significantly decreased in RA patients. Treatment with MTX caused a decrease in B cells (memory and plasma cell), and a decrease in CD4 Th cells (Th1 and Th17), while treatment with TNFi resulted in a significant increase in the population of B cells. Characterization of the RNA expression patterns found that most of the differentially expressed genes in RA subjects after treatment can be explained by changes in cell frequencies (98% and 74% respectively for MTX and TNFi)

    Lethal protein produced in response to competition between sibling bacterial colonies

    No full text
    Sibling Paenibacillus dendritiformis bacterial colonies grown on low-nutrient agar medium mutually inhibit growth through secretion of a lethal factor. Analysis of secretions reveals the presence of subtilisin (a protease) and a 12 kDa protein, termed sibling lethal factor (Slf). Purified subtilisin promotes the growth and expansion of P. dendritiformis colonies, whereas Slf is lethal and lyses P. dendritiformis cells in culture. Slf is encoded by a gene belonging to a large family of bacterial genes of unknown function, and the gene is predicted to encode a protein of approximately 20 kDa, termed dendritiformis sibling bacteriocin. The 20 kDa recombinant protein was produced and found to be inactive, but exposure to subtilisin resulted in cleavage to the active, 12 kDa form. The experimental results, combined with mathematical modeling, show that subtilisin serves to regulate growth of the colony. Below a threshold concentration, subtilisin promotes colony growth and expansion. However, once it exceeds a threshold, as occurs at the interface between competing colonies, Slf is then secreted into the medium to rapidly reduce cell density by lysis of the bacterial cells. The presence of genes encoding homologs of dendritiformis sibling bacteriocin in other bacterial species suggests that this mechanism for self-regulation of colony growth might not be limited to P. dendritiformis

    Gut microbiome structure and metabolic activity in inflammatory bowel disease

    Get PDF
    The inflammatory bowel diseases (IBDs), which include Crohn's disease (CD) and ulcerative colitis (UC), are multifactorial chronic conditions of the gastrointestinal tract. While IBD has been associated with dramatic changes in the gut microbiota, changes in the gut metabolome-the molecular interface between host and microbiota-are less well understood. To address this gap, we performed untargeted metabolomic and shotgun metagenomic profiling of cross-sectional stool samples from discovery (n = 155) and validation (n = 65) cohorts of CD, UC and non-IBD control patients. Metabolomic and metagenomic profiles were broadly correlated with faecal calprotectin levels (a measure of gut inflammation). Across >8,000 measured metabolite features, we identified chemicals and chemical classes that were differentially abundant in IBD, including enrichments for sphingolipids and bile acids, and depletions for triacylglycerols and tetrapyrroles. While > 50% of differentially abundant metabolite features were uncharacterized, many could be assigned putative roles through metabolomic 'guilt by association' (covariation with known metabolites). Differentially abundant species and functions from the metagenomic profiles reflected adaptation to oxidative stress in the IBD gut, and were individually consistent with previous findings. Integrating these data, however, we identified 122 robust associations between differentially abundant species and well-characterized differentially abundant metabolites, indicating possible mechanistic relationships that are perturbed in IBD. Finally, we found that metabolome- and metagenome-based classifiers of IBD status were highly accurate and, like the vast majority of individual trends, generalized well to the independent validation cohort. Our findings thus provide an improved understanding of perturbations of the microbiome-metabolome interface in IBD, including identification of many potential diagnostic and therapeutic targets
    corecore