310 research outputs found

    Exotic baryons from a heavy meson and a nucleon - Positive parity states -

    Full text link
    We study heavy baryons with exotic flavor quantum numbers formed by a heavy meson and a nucleon (DbarN and BN) with positive parity. One pion exchange interaction, providing a tensor force, dominates as a long range force to bind the DbarN and BN ystems. In the heavy quark mass limit, pseudoscalar meson and vector meson are degenerate and the binding mechanism by the tensor force analogous to that in the nuclear systems becomes important. As a result, we obtain the DbarN and BN resonant states in the J^P=1/2^+, 3/2^+ and 5/2^+ channels with I=0

    R-process viable outflows are suppressed in global alpha-viscosity models of collapsar disks

    Full text link
    Collapsar disks have been proposed to be rich factories of heavy elements, but the major question of whether their outflows are neutron-rich, and could therefore represent significant sites of the rapid neutron-capture (r-) process, or dominated by iron-group elements remains unresolved. We present the first global models of collapsars that start from a stellar progenitor and self-consistently describe the evolution of the disk, its composition, and its outflows in response to the imploding stellar mantle, using energy-dependent M1 neutrino transport and an alpha-viscosity to approximate turbulent angular-momentum transport. We find that a neutron-rich, neutrino-dominated accretion flow (NDAF) is established only marginally--either for short times or relatively low viscosities--because the disk tends to disintegrate into an advective disk (ADAF) already at relatively high mass-accretion rates, launching powerful outflows but preventing it from developing a hot, dense, and therefore neutron-rich core. Viscous outflows disrupt the star within ~100s with explosion energies close to that of hypernovae. If viscosity is neglected, a stable NDAF with disk mass of about 1Msun is formed but is unable to release neutron-rich ejecta, while it produces a relatively mild explosion powered by a neutrino-driven wind blown off its surface. With ejecta electron fractions close to 0.5, all models presumably produce large amounts of Ni56. Our results suggest that collapsar models based on the alpha-viscosity are inefficient r-process sites and that genuinely magnetohydrodynamic effects may be required to generate neutron-rich outflows. A relatively weak effective viscosity generated by magnetohydrodynamic turbulence would improve the prospects for obtaining neutron-rich ejecta.Comment: 7 pages, 4 figures, 1 table, slightly revised discussion, main results unchanged compared to v1, accepted to ApJ

    Collimated Jet or Expanding Outflow: Possible Origins of GRBs and X-Ray Flashes

    Get PDF
    We investigate the dynamics of an injected outflow propagating in a progenitor in the context of the collapsar model for gamma-ray bursts (GRBs) through two dimensional axisymmetric relativistic hydrodynamic simulations. Initially, we locally inject an outflow near the center of a progenitor. We calculate 25 models, in total, by fixing its total input energy to be 10^{51} ergs s^{-1} and radius of the injected outflow to be 7×1077\times 10^7 cm while varying its bulk Lorentz factor, Γ0=1.055\Gamma_{0} = 1.05\sim 5, and its specific internal energy, ϵ0/c2=0.130\epsilon_0/c^2 = 0.1\sim 30. The injected outflow propagates in the progenitor and drives a large-scale outflow or jet. We find a smooth but dramatic transition from a collimated jet to an expanding outflow among calculated models. The maximum Lorentz factor is, on the other hand, sensitive to both of Γ0\Gamma_0 and ϵ0\epsilon_0; roughly ΓmaxΓ0(1+ϵ0/c2)\Gamma_{\rm max} \sim \Gamma_0 (1+\epsilon_0/c^2). Our finding will explain a smooth transition between the GRBs, X-ray rich GRBs (XRRs) and X-ray Flashes (XRFs) by the same model but with different ϵ0\epsilon_0 values.Comment: Comments 51 pages, 21 figures. accepted for publication in ApJ high resolution version is available at http://www.mpa-garching.mpg.de/~mizuta/COLLAPSAR/collapsar.htm

    High Ratio of 44Ti/56Ni in Cas A and Axisymmetric Collapse-Driven Supernova Explosion

    Full text link
    The large abundance ratio of 44Ti/56Ni^{44}Ti/^{56}Ni in Cas A is puzzling. In fact, the ratio seems to be larger than the theoretical constraint derived by Woosley & Hoffman (1991). However, this constraint is obtained on the assumption that the explosion is spherically symmetric, whereas Cas A is famous for the asymmetric form of the remnant. Recently, Nagataki et al. (1997) calculated the explosive nucleosynthesis of axisymmetrically deformed collapse-driven supernova. They reported that the ratio of 44Ti/56Ni^{44}Ti/^{56}Ni was enhanced by the stronger alpha-rich freezeout in the polar region. In this paper, we apply these results to Cas A and examine whether this effect can explain the large amount of 44Ti^{44}Ti and the large ratio of 44Ti/56Ni^{44}Ti/^{56}Ni. We demonstrate that the conventional spherically symmetric explosion model can not explain the 44^{44}Ti mass produced in Cas A if its lifetime is shorter than \sim 80 years and the intervening space is transparent to the gamma-ray line from the decay of 44^{44}Ti. On the other hand, we show the axisymmetric explosion models can solve the problem. We expect the same effect from a three dimensionally asymmetric explosion, since the stronger alpha-rich freezeout will also occur in that case in the region where the larger energy is deposited.Comment: 10 pages, LaTeX text and 3 postscript figure

    Explosive Nucleosynthesis in Axisymmetrically Deformed Type II Supernovae

    Get PDF
    Explosive nucleosynthesis under the axisymmetric explosion in Type II supernova has been performed by means of two dimensional hydrodynamical calculations. We have compared the results with the observations of SN 1987A. Our chief findings are as follows: (1) 44Ti^{44}Ti is synthesized so much as to explain the tail of the bolometric light curve of SN 1987A. We think this is because the alpha-rich freezeout takes place more actively under the axisymmetric explosion. (2) 57Ni^{57}Ni and 58Ni^{58}Ni tend to be overproduced compared with the observations. However, this tendency relies strongly on the progenitor's model. We have also compared the abundance of each element in the mass number range A=1673A= 16-73 with the solar values. We have found three outstanding features. (1) For the nuclei in the range A=1640A=16-40, their abundances are insensitive to the initial form of the shock wave. This insensitivity is favored since the spherical calculations thus far can explain the solar system abundances in this mass range. (2) There is an enhancement around A=45 in the axisymmetric explosion compared with the spherical explosion fairly well. In particular, 44Ca^{44}Ca, which is underproduced in the present spherical calculations, is enhanced significantly. (3) In addition, there is an enhancement around A=65. This tendency does not rely on the form of the mass cut but of the initial shock wave. This enhancement may be the problem of the overproduction in this mass range, although this effect would be relatively small since Type I supernovae are chiefly responsible for this mass number range.Comment: 32 pages, 12 figures, LaTe

    High Energy Neutrino Emission and Neutrino Background from Gamma-Ray Bursts in the Internal Shock Model

    Get PDF
    High energy neutrino emission from GRBs is discussed. In this paper, by using the simulation kit GEANT4, we calculate proton cooling efficiency including pion-multiplicity and proton-inelasticity in photomeson production. First, we estimate the maximum energy of accelerated protons in GRBs. Using the obtained results, neutrino flux from one burst and a diffuse neutrino background are evaluated quantitatively. We also take account of cooling processes of pion and muon, which are crucial for resulting neutrino spectra. We confirm the validity of analytic approximate treatments on GRB fiducial parameter sets, but also find that the effects of multiplicity and high-inelasticity can be important on both proton cooling and resulting spectra in some cases. Finally, assuming that the GRB rate traces the star formation rate, we obtain a diffuse neutrino background spectrum from GRBs for specific parameter sets. We introduce the nonthermal baryon-loading factor, rather than assume that GRBs are main sources of UHECRs. We find that the obtained neutrino background can be comparable with the prediction of Waxman & Bahcall, although our ground in estimation is different from theirs. In this paper, we study on various parameters since there are many parameters in the model. The detection of high energy neutrinos from GRBs will be one of the strong evidences that protons are accelerated to very high energy in GRBs. Furthermore, the observations of a neutrino background has a possibility not only to test the internal shock model of GRBs but also to give us information about parameters in the model and whether GRBs are sources of UHECRs or not.Comment: 14 pages, 17 figures, accepted for publication in PRD, with extended descriptions. Conclusions unchange

    Optimization of the analogue-sensitive Cdc2/Cdk1 mutant by in vivo selection eliminates physiological limitations to its use in cell cycle analysis

    Get PDF
    Analogue-sensitive (as) mutants of kinases are widely used to selectively inhibit a single kinase with few off-target effects. The analogue-sensitive mutant cdc2-as of fission yeast (Schizosaccharomyces pombe) is a powerful tool to study the cell cycle, but the strain displays meiotic defects, and is sensitive to high and low temperature even in the absence of ATP-analogue inhibitors. This has limited the use of the strain for use in these settings. Here, we used in vivo selection for intragenic suppressor mutations of cdc2-as that restore full function in the absence of ATP-analogues. The cdc2-asM17 underwent meiosis and produced viable spores to a similar degree to the wild-type strain. The suppressor mutation also rescued the sensitivity of the cdc2-as strain to high and low temperature, genotoxins and an anti-microtubule drug. We have used cdc2-asM17 to show that Cdc2 activity is required to maintain the activity of the spindle assembly checkpoint. Furthermore, we also demonstrate that maintenance of the Shugoshin Sgo1 at meiotic centromeres does not require Cdc2 activity, whereas localization of the kinase aurora does. The modified cdc2-asM17 allele can be thus used to analyse many aspects of cell-cycle-related events in fission yeast
    corecore