
, 140063, published 2 July 20144 2014 Open Biol.
 
Yuki Aoi, Shigehiro A. Kawashima, Viesturs Simanis, Masayuki Yamamoto and Masamitsu Sato
 
in cell cycle analysis

 selection eliminates physiological limitations to its usein vivo
Optimization of the analogue-sensitive Cdc2/Cdk1 mutant by 
 
 

Supplementary data
/content/suppl/2014/07/09/rsob.140063.DC1.html 

 "Data Supplement"

References
/content/4/7/140063.full.html#ref-list-1

 This article cites 76 articles, 25 of which can be accessed free

any medium, provided the original work is properly cited.
Attribution License, which permits unrestricted use, distribution, and reproduction in 
This is an open-access article distributed under the terms of the Creative Commons

Subject collections

 (68 articles)molecular biology   �
 (40 articles)genetics   �

 (93 articles)cellular biology   �
 
Articles on similar topics can be found in the following collections

Email alerting service  hereright-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up in the box at the top

on October 30, 2014Downloaded from on October 30, 2014Downloaded from brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148007797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


on October 30, 2014Downloaded from 
rsob.royalsocietypublishing.org
Research
Cite this article: Aoi Y, Kawashima SA,

Simanis V, Yamamoto M, Sato M. 2014

Optimization of the analogue-sensitive

Cdc2/Cdk1 mutant by in vivo selection

eliminates physiological limitations to its use

in cell cycle analysis. Open Biol. 4: 140063.

http://dx.doi.org/10.1098/rsob.140063
Received: 1 April 2014

Accepted: 10 June 2014
Subject Area:
cellular biology/genetics/molecular biology

Keywords:
cell cycle, cyclin-dependent kinase,

chemical genetics, analogue-sensitive mutant,

fission yeast
Author for correspondence:
Masamitsu Sato

e-mail: masasato@waseda.jp
†These authors contributed equally to this

study.

Electronic supplementary material is available

at http://dx.doi.org/10.1098/rsob.140063.
& 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
Optimization of the analogue-
sensitive Cdc2/Cdk1 mutant by
in vivo selection eliminates
physiological limitations to its
use in cell cycle analysis
Yuki Aoi1,2,†, Shigehiro A. Kawashima2,†, Viesturs Simanis3,

Masayuki Yamamoto1,4 and Masamitsu Sato1,5,6

1Department of Biophysics and Biochemistry, Graduate School of Science, and
2Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo,
Tokyo 113-0033, Japan
3EPFL SV ISREC UPSIM SV2.1830, Station 19, Lausanne 1015, Switzerland
4Laboratory of Cell Responses, National Institute for Basic Biology, Nishigonaka 38,
Myodaiji, Okazaki, Aichi 444-8585, Japan
5PRESTO, Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
6Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience,
Graduate School of Advanced Science and Engineering, Waseda University, TWIns,
2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
1. Summary
Analogue-sensitive (as) mutants of kinases are widely used to selectively inhibit a

single kinase with few off-target effects. The analogue-sensitive mutant cdc2-as of

fission yeast (Schizosaccharomyces pombe) is a powerful tool to study the cell cycle,

but the strain displays meiotic defects, and is sensitive to high and low tempera-

ture even in the absence of ATP-analogue inhibitors. This has limited the use of

the strain for use in these settings. Here, we used in vivo selection for intragenic

suppressor mutations of cdc2-as that restore full function in the absence of ATP-

analogues. The cdc2-asM17 underwent meiosis and produced viable spores to a

similar degree to the wild-type strain. The suppressor mutation also rescued

the sensitivity of the cdc2-as strain to high and low temperature, genotoxins and

an anti-microtubule drug. We have used cdc2-asM17 to show that Cdc2 activity

is required to maintain the activity of the spindle assembly checkpoint. Further-

more, we also demonstrate that maintenance of the Shugoshin Sgo1 at meiotic

centromeres does not require Cdc2 activity, whereas localization of the kinase

aurora does. The modified cdc2-asM17 allele can be thus used to analyse many

aspects of cell-cycle-related events in fission yeast.
2. Introduction
Phosphorylation is involved in many cellular events, often serving as a molecular

switch to regulate signalling pathways. The fission yeast genome contains 96 protein

kinases (www.pombase.org [1]). A variety of genetic materials and methods have

been developed to investigate the function of each kinase in Schizosaccharomyces

http://crossmark.crossref.org/dialog/?doi=10.1098/rsob.140063&domain=pdf&date_stamp=2014-07-02
mailto:masasato@waseda.jp
http://dx.doi.org/10.1098/rsob.140063
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pombe. For kinases that are indispensable for cell growth, it is

common to use conditional mutants to knockdown the gene

function. Those include temperature-sensitive (ts) mutants,

which lose functions at the restrictive temperature. Although

this method provides a powerful genetic tool, it poses practical

problems for cell biology. For instance, it is difficult to reduce

kinase activity rapidly during live-cell imaging because of the

technical difficulties involved in changing the temperature. Fur-

thermore, most mutants are not well characterized with regard

to how fast the activity is lost following shift to the restrictive

temperature. Small molecules are frequently used as kinase

inhibitors, particularly for the analysis of cultured mammalian

cells; however, many of these work poorly on yeast cells (for

example, fig. 1 of [2]).

These technical difficulties were solved by a so-called

chemical genetics approach [3]. Substitution of a single amino

acid in the adenosine triphosphate (ATP)-binding pocket of a

kinase (the so-called gatekeeper residue) renders the mutant

kinase sensitive to ATP-analogue molecules that cannot fit

into the active site of an unmodified kinase. This confers speci-

ficity to the inhibitor, as genetically unmodified kinases are

unaffected by ATP-analogues. They also inhibit the kinase func-

tion rapidly (approximately minutes after a drug addition to the

medium [4]), permitting time-lapse observation over short

time scales. In principle, the gatekeeper residue of any kinase

can be predicted from its amino acid sequence [5,6], which

has prompted the construction of an as-mutant collection of

fission yeast essential kinases [7]. Analogue-sensitive mutants

are now widely used for analyses of cell cycle regulation.

Mitotic progression is controlled by protein kinases that

have been conserved from yeast to human [8]. The main

mitotic kinases include cyclin-dependent kinase 1 (Cdk1),

known as Cdc2 in fission yeast and Cdc28 in budding yeast

[9–11]; the polo kinase, known as Plo1 in fission yeast and

Cdc5 in budding yeast [12–14]; and the single aurora

kinase (equivalent to aurora B), which is known as Ark1 in

fission yeast and Ipl1 in budding yeast [15,16]. Analogue-

sensitive mutants of these mitotic kinases have been described:

fission yeast cdc2-as [17] and budding yeast cdc28-as1 [3] for

Cdk1; cdc5-as [18] and plo1-as [7] for polo kinase; and

ark1-as2/as3 [19] and ipl1-as [5] for aurora B kinase.

Cdc2/Cdc28 regulates both the G1/S and G2/M transitions

in S. pombe and Saccharomyces cerevisiae. Comprehensive proteo-

mics analyses using cdc28-as1 in budding yeast have identified

more than 300 Cdk1 substrates [4,20]. In S. pombe, Cdc2 is

required both for the G1/S and G2/M transitions (for review,

see [21]). Many mitotic substrates have been identified; for

example, Cdc2 is required for activation of Plo1 [22], for faithful

chromosome segregation through controlling localization of the

chromosomal passenger complex (CPC) [23] and Nsk1 [24], for

chromosome condensation through nuclear accumulation of

the condensin Cut3/SMC4 [25,26], and for localization of the

microtubule-associated protein (MAP) Dis1/tumour overex-

pressed gene (TOG) at kinetochores [27,28]. Cdc2 is also

required for activation of the anaphase-promoting complex

(APC/cyclosome) [29–31].

Combining analogue-sensitive mutants of mitotic kinases

with microscopy of living cells provides a way to investigate

kinase function during short periods of the cell cycle (e.g. meta-

phase or anaphase): addition of the inhibitory analogue

decreases the activity of the kinase rapidly, to the extent desired

[17,32]. This approach has revealed that Cdc2 is required for the

nuclear accumulation of the MAP complex Alp7/transforming
acidic coiled-coil-Alp14/TOG in early stages of mitosis, which

facilitates bipolar spindle assembly [33–35], and in late mitosis,

downregulation of Cdc2 promotes the asymmetric localization

of septum initiation network proteins at spindle pole bodies

(SPBs, the centrosome equivalent in yeast) [17,36].

Although analogue-sensitive mutants can be easily made by

substitution of the gatekeeper amino acid, this mutation

occasionally has deleterious effects. The fission yeast cdc2-as
mutant is generated by the F84G mutation. However, in addition

to analogue sensitivity, the cells are elongated at 258C, indicating

a delay in mitotic commitment, and they are also heat-sensitive,

particularly at 368C, even in the absence of the ATP-analogue

molecule [17]. In addition, the cdc2-as mutant is defective in

sexual differentiation (mating and meiosis) and the mutant

zygotes produce two-spore asci instead of four-spore ones of

thewild-type zygotes [17]. Such phenotypes have been observed

in other hypomorphic alleles of Cdc2 [37–39] and the meiotic

mutant cdc2-N22/tws1 [40,41], indicating that the gatekeeper

mutation reduces Cdc2–Cdc13 activity per se. This limits the use-

fulness of the cdc2-as allele in certain circumstances. For example,

it is difficult to combine cdc2-as with many heat-sensitive

mutants that require incubation at 368C to arrest efficiently

(e.g. cdc25–22 [42]); cdc2-as also shows a negative interaction

with mutants that arrest in mitosis, such as the b-tubulin

mutants nda3-311 (cs) and nda3/alp12-1828 (ts) [43–45]. This

incompatibility of the cdc2-as mutation with key mutants used

to impose cell cycle arrests limits its utility for the analysis of

some mitotic functions of Cdc2–Cdc13.

Meiosis in fission yeast consists of pre-meiotic DNA repli-

cation, meiotic recombination during meiotic prophase, and

two consecutive rounds of chromosome segregation (meiosis

I and meiosis II) without an intervening S phase, prior to spor-

ulation. To achieve this meiosis-specific cell cycle progression,

the Cdc2 activity is regulated in a special manner during meio-

sis. A fraction of Cdc13/cyclin B is protected from degradation

even after anaphase onset of meiosis I to provide CDK activity

for the onset of meiosis II [46]; this contrasts with the situation

in mitosis, where Cdc13 is entirely degraded at anaphase

onset. Degradation of Cdc13 by the APC/cyclosome is inhib-

ited by Mes1 after anaphase onset of meiosis I [46], whereas

CDK must be fully inactivated after meiosis II to avoid ‘meio-

sis III’ [47]. The unique modulation of Cdc2–Cdc13 implies

that the function of Cdc2 in meiosis may differ from that in

mitosis. The multiple roles of Cdc2 in meiosis have limited

the use of conditional mutants to analyse its function. The

existing cdc2-as mutant is also limited in its suitability for

studies in meiosis, owing to production of dyads, in contrast

to tetrads that wild-type zygotes produce [17].

Thus, although the previously described cdc2-as mutant is

a powerful tool, it also has technical limitations in some

experimental settings. We therefore decided to use natural

selection to modify the cdc2-as allele to eliminate the undesir-

able hypomorphic phenotypes by additional mutations. We

have used this improved cdc2-as allele to examine various

functions of cdc2 during mitosis and meiosis.
3. Results and discussion
3.1. Isolation of intragenic suppressor mutants of cdc2-as
The original cdc2-as mutant gene contains a single amino

acid substitution (F84G) at the gatekeeper residue [17]
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Figure 1. Characterization of the cdc2-asM17 mutant in mitotic cell cycle. (a) Schematic of wild-type cdc2 (WT), cdc2-as (as), cdc2-asM17 (asM17) and cdc2-
asM17 þ bsd (asM17 þ bsd) mutant genes. The bsd marker was inserted in the downstream of the cdc2 coding sequence. (b) Calcofluor staining of vegetative
cells at 258C. Scale bar, 10 mm. The scatter-dot plot indicates distribution of cell length at cell division (mm; n � 100). Black bars indicate mean values (mean+
s.e.: WT ¼ 14.0+ 0.1, as ¼ 17.2+ 0.3, asM17 ¼ 14.8+ 0.1, asM17 þ bsd ¼ 14.3+ 0.1). (c) OD (590 nm) measurement of log-phase cultures at 258C.
(d ) FACS results showing the DNA content of vegetative cells at 258C. For control of 1C DNA content, 12 mM HU was added to the WT culture (WT þ HU).
(e) Fivefold dilutions of the indicated strains were spotted onto the following media: YE containing 5 mM HU or 5 mM CPT, YE irradiated with 100 J m22

UV. Plates were incubated at the indicated temperature for 3 – 6 days.
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(figure 1a). We performed an error-prone PCR to introduce

additional mutations to the cdc2-as gene containing the

open reading frame and 500 bp upstream and downstream

flanking regions (the strategy is summarized in the electronic

supplementary material, figure S1a). The amplified 2.2 kb

fragment was used for transformation of the original cdc2-as
mutant, selecting for colony formation at 368C (electronic

supplementary material, figure S1a,b). We expected that

these survivors should include intragenic suppressor

mutations. We chose 17 colonies that survived at 368C, and

restreaked onto the YE5S plate (rich medium) containing

phloxine B, which stains dead cells. Eight of 17 colonies

(named M1, M2, M6, M8, M10, M11, M12 and M17) grew

well at 368C as well as at 208C (electronic supplementary

material, figure S1b), therefore those candidates were neither

ts nor cs. Importantly, all of these survivors remained sensi-

tive to the ATP-analogue molecule 1NM-PP1 (electronic
supplementary material, figure S1b), indicating that none of

the survivors were revertants of the as mutation.

Based upon these assays, we retained the M17 mutant, in

which ts and cs phenotypes were significantly suppressed,

for further analyses (the mutant allele is called cdc2-asM17
hereafter; figure 1a). We next inserted the bsd gene (conferring

the blasticidin S resistance [48]) as the selection marker for the

modified cdc2-asM17 gene. The bsd gene was inserted at the

approximately 0.5 kb downstream of the termination codon

of the cdc2-asM17 gene (the allele is called cdc2-asM17 þ bsd
hereafter; figure 1a), and this did not affect the function of

Cdc2 (electronic supplementary material, figure S1b,c).

To validate cdc2-asM17 and cdc2-asM17þ bsd mutants as

new tools for general purposes, we evaluated whether they

behave normally in the absence of ATP-analogues, because the

original cdc2-as mutant is slightly deficient in cell cycle [17].

First, we measured the cell size of cdc2-asM17 (+bsd) mutants
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at cell division. As shown in figure 1b, cdc2-as cells were slightly

longer than wild-type (WT) cells [17], indicating compromised

CDK activity. The elongation was not observed in the cdc2-
asM17 and cdc2-asM17 þ bsd strains. This was confirmed by a

growth curve assay of four strains (WT, cdc2-as, -asM17,

-asM17þ bsd; figure 1c): the growth of the cdc2-as strain was

slightly slower than WT, whereas the cdc2-asM17 and

-asM17þ bsd strains grew at the same rate as WT. Next, we per-

formed FACS analysis to examine the DNA content of cdc2-
asM17 mutants. As shown in figure 1d, cdc2-asM17 and

-asM17þ bsd mutants displayed similar DNA content profiles

compared with WT, indicating that cell cycle progression of

those mutants is similar to WT in the absence of the inhibitory

drug. Because the DNA structure check point depends upon

Cdc2 for activity, we examined whether cdc2-asM17 mutants

were sensitive to genotoxins. Although the original cdc2-as
strain was slightly sensitive to hydroxyurea (HU), UV and

camptothecin (CPT), the cdc2-asM17 strains were not (figure

1e). Finally, we investigated whether cdc2-asM17 remains

associated with Suc1 (p13suc1), which is known to interact

with the Cdc2-cyclin B complex [49]. A pulldown assay using

p13 Suc1-beads indicated that the cdc2-asM17 mutation did not

affect interaction between CDK and Suc1, in the absence of

ATP-analogues (electronic supplementary material, figure S2).

Together the data described above, we demonstrate that

the cdc2-asM17 mutant (+bsd) behaves similarly to WT in

assays where the original cdc2-as allele shows clear defects,

thereby validating its use to study the role of Cdc2 activity

during mitotic cell cycle in several conditions where the orig-

inal cdc2-as was not functional. Insertion of the bsd marker

gene at the downstream of the cdc2 gene did not cause

abnormality as far as we have tested (figure 1b–e).

Next, we investigated if the cdc2-asM17 mutant suppressed

the meiotic defects seen in the original cdc2-as mutant.

Homothallic h90 cdc2-asM17 cells underwent mating and

meiosis, and mostly generated four nuclei and four spores per

cell, as in WT, whereas the original cdc2-as cells generated

abnormal two or three nuclei and two or three spores [17]

(figure 2a–c). cdc2-asM17þ bsd also generated four nuclei

and four spores per cell (figure 2a–c). Spore viabilities of
cdc2-asM17 (91%, n ¼ 108) and cdc2-asM17 þ bsd (94%, n ¼
108) are comparable with that of WT (100%, n ¼ 104), indicating

that cdc2-asM17 and cdc2-asM17 þ bsd mutants undergo meio-

sis and produce viable spores to a similar extent to WT. Thus,

these mutants are suitable for analysis of Cdc2 functions in

meiosis, which could not be addressed using the original

cdc2-as mutant. Sporulation of five other suppressor mutants

(M1–M11) was also examined, and sporulation defects of the

original cdc2-as mutant were in general suppressed to some

extent (electronic supplementary material, figure S3).

3.2. Characterization of the suppressor mutations
We then sequenced the cdc2 gene of the suppressor mutants.

Interestingly, mutants M11 and M17 possessed mutations at

the same residue, lysine 79 (figure 3a). M11 had a substitution

of K79 to T (threonine), whereas M17 had a substitution of

K79 to E (glutamic acid). The mutation site was close to the

as mutation site F84G in the primary structure. M10 had a

substitution of glutamine at five to glutamic acid (Q5E).

To explore how the suppressor mutation in the mutant

M17 (K79E) suppressed the as mutation (F84G), the second-

ary and tertiary structure of the mutant protein was

subjected to the protein folding prediction program PHYRE2

(http://www.sbg.bio.ic.ac.uk/phyre2/) [50]. For the sake of

simplicity, we used amino acid residues 1–149 (from the

N-terminus to the b7 sheet), which form the N-terminal lobe

of the kinase [51]. Introduction of the analogue-sensitive

mutation F84G was predicted to generate a structural alteration

around the ATP binding pocket (Cdc2-as; figure 3b). The defor-

mation of the ATP binding pocket was suppressed by the

additional introduction of K79E (Cdc2-asM17; figure 3b).

Consistent with this result, mutations within a b sheet in the

N-terminal lobe have been reported to suppress the gatekeeper

mutations that are not tolerated in several kinases [52]. It is

possible that the introduction of K79E, which locates at the

edge of the b sheet, may twist the sheet, so that the opposite

edge of the sheet harbouring F84G alters the angle at the

ATP-binding pocket. Kinase assays of WT Cdc2 and Cdc2-

asM17 revealed that the activity of asM17, but not of WT

http://www.sbg.bio.ic.ac.uk/phyre2/
http://www.sbg.bio.ic.ac.uk/phyre2/
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Cdc2, was inhibited by addition of 102–103 nM of the ATP-

analogue 1NM-PP1 (figure 3c). Although the suppressor

mutation rescues all the phenotypic defects of cdc2-as, the

in vitro kinase assay nonetheless reveals that Cdc2-asM17 is

less active than WT Cdc2 in the absence of 1NM-PP1 (figure 3c).
3.3. Cdc2 and the SAC: the use of cdc2-asM17 with
MBC or the b-tubulin ts mutant

Elevation of the Cdc2 kinase activity induces assembly of

the bipolar spindle at mitotic onset. If microtubule formation

is perturbed by internal mutations or drugs, then the
attachment of kinetochores to microtubules may be inhibited.

The spindle assembly checkpoint (SAC) monitors kineto-

chore–microtubule attachment to ensure faithful chromosome

segregation in mitosis. The SAC components Mad1–Mad2

recognize unattached kinetochores and arrest cell cycle pro-

gression at metaphase until correct attachment has been

accomplished. Recent studies in yeast, flies, frogs and humans

have suggested that Cdk1 can serve as an upstream activator

of the SAC [53–58]. We therefore used the cdc2-asM17 mutant

to examine whether CDK activity is required to maintain an

SAC arrest in S. pombe.
First, we tested whether the microtubule drug methyl

benzimidazol-2-yl-carbamate (MBC) induces cdc2-as cells to
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was combined with the b-tubulin ts mutation nda3/alp12 – 1828. Cells were arrested at metaphase at 368C. Filming was done similarly to (b). After 1NM-
PP1 addition (t ¼ 0 min), Mad2-GFP dots disappeared within 3 min. DMSO was added as negative control. Scale bars, 2 mm. (d ) Duration of Mad2-GFP dots
residence at kinetochores after addition of DMSO or 1NM-PP1 in (b,c) was measured.
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arrest at metaphase; the original cdc2-as mutant was sensi-

tive to a low concentration of MBC (10 mg ml21), which did

not prevent colony formation in WT cells (figure 4a). By

contrast, the cdc2-asM17 mutant was not sensitive to MBC

(figure 4a). We therefore constructed the cdc2-asM17 strain

expressing Mad2-GFP, the kinetochore marker Mis6-2mRFP

and the SPB marker Sid4-2ECFP. Cells were treated with

MBC to induce metaphase arrest; bright Mad2-GFP signal

was observed at kinetochores, which is a hallmark of SAC

activation (21 min, figure 4b). Cells were then filmed and

1NM-PP1 or DMSO was added to the medium (0 min,

figure 4b). In the DMSO treatment, Mad2-GFP dots remained

at kinetochores for longer than 15 min (þDMSO, figure 4b,d).

By contrast, Mad2-GFP dots mostly disappeared within

4 min after 1NM-PP1 addition (þ1NM-PP1, figure 4b,d).

This demonstrates that Cdc2 kinase activity is required

for maintenance of SAC activation in the presence of

microtubule perturbation, through Mad2 recruitment to
kinetochores. A very recent study in human cells

has shown that Mad2 recruitment to kinetochore requires

Cdk1 activity [59], suggesting that this mechanism has been

conserved through evolution.

We examined this further using the ts b-tubulin mutant

nda3/alp12-1828, which was impossible to combine with

the original cdc2-as mutant, because the long G2-phase of

S. pombe results in a predominant G2-arrest owing to temp-

erature sensitivity of the cdc2-as allele. After shift to 368C,

the nda3-1828 cdc2-asM17 mutant efficiently arrested at pro-

metaphase without a spindle, and Mad2-GFP dots were

associated with kinetochores (21 min, figure 4c). In the pres-

ence of 1NM-PP1, Mad2-GFP dots mostly disappeared

within 4 min (þ1NM-PP1, figure 4c,d), confirming that SAC

maintenance requires Cdc2 activity during mitosis. These

experiments also demonstrate the utility of the analogue-

sensitive mutant cdc2-asM17 to investigate the involvement

of Cdc2 in mitotic events such as the SAC.
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3.4. SAC silencing and PP1: the use of cdc2-asM17 with
the b-tubulin cs mutant

Recently, it was reported that SAC silencing (inactivation)

during mitosis is achieved by the protein phosphatase

PP1 [60–63]. The fission yeast has two PP1 phosphatases,

Dis2 and Sds21 [64,65], though only Dis2 has a function

in SAC silencing [61]. To test whether Dis2/PP1 is required

for the SAC silencing following Cdc2 inactivation (as

shown in figure 4), we created the double mutant cdc2-
asM17 nda3-KM311. The double mutant of the original

cdc2-as and nda3-KM311 did not enter mitosis efficiently,

owing to the cold-sensitivity of cdc2-as [17]. By contrast,

the cdc2-asM17 nda3-KM311 cells arrested efficiently in

mitosis at 188C with a strong nuclear signal of cyclin B/

Cdc13-YFP, (0 min, figure 5a,c). When 1NM-PP1 was

added to the medium, the frequency of cells harbouring

Cdc13-YFP signal decreased (60 min, figure 5a,c). In con-

trast, when the dis2þ gene was disrupted, the triple

mutant dis2D nda3-KM311 cdc2-asM17 retained a Cdc13-

YFP signal even after addition of 1NM-PP1 (figure 5b,c).

This indicates that Cdc2 and Dis2/PP1 are required to maintain

and silence the checkpoint machinery, respectively. Ark1/

aurora B kinase, a component of the CPC, is also required for

SAC maintenance [61]. As centromere targeting of CPC

depends on Cdk1 [23], maintenance of the SAC by Cdc2

might be achieved through the control of CPC localization to

centromeres. Alternatively, Cdc2 might regulate the SAC inde-

pendently of CPC localization, because centromeric retention

of CPC in anaphase does not result in APC/C inhibition

(SAC activation) in human cells [66]. How Dis2 /PP1 counter-

acts Cdc2 in SAC silencing is an important question and will

be addressed in future studies. The dis2D nda3-KM311 cdc2-
asM17 mutant frequently resulted in unequal chromosome

segregation with persistent nuclear Cdc13-YFP (figure 5b),

indicating that checkpoint adaptation (slippage into anaphase)

may occur even without complete cyclin destruction, when the

Cdc2 activity is inhibited.
3.5. Shugoshin and Cdc2: the use of cdc2-asM17
in meiosis

Genetic perturbation of Cdc2 prevents entry into meiosis I

[67], making it difficult to examine the function of Cdc2 in

spindle organization and chromosome segregation during

meiosis I. Because the cdc2-asM17 strain does not show meio-

tic defects in the absence of ATP-analogues we used it to

address this question.

We have previously used cdc2-asM17 strain to show that

reorganization of SPBs at the onset of meiosis I requires

Cdc2 activity [68]. We have now used it to examine the role

of Cdc2 activity at the metaphase–anaphase transition in

meiosis I. To ensure faithful segregation of chromosomes

during meiosis I, proteins such as aurora B and protein

phosphatase 2A (PP2A) are localized transiently to centro-

meres, until the onset of anaphase I [69,70]. It is unclear

whether delocalization of aurora B and PP2A at the onset

of anaphase I depends on reduction of the Cdc2 activity or

proteasome-dependent protein degradation.

To distinguish these two possibilities, we used slp1-s.o.
cut23-s.o. mutations, in which meiotic expression of the APC/

C component Cut23 and its activator Slp1 is repressed [71],

thereby preventing proteasome-dependent protein degra-

dation. Then, 1NM-PP1 was added to inhibit Cdc2 activity of

cdc2-asM17 cells. First, we examined localization of Ark1

(aurora B). Cdc2 phosphorylates the CPC component Bir1/

survivin to recruit Ark1 to centromeres in fission yeast mitosis

[23], but it has not been tested whether this mechanism is con-

served during meiosis. Ark1 localized to centromeres in cells

arrested in metaphase I, and delocalized from centromeres

when Cdc2 activity was reduced by addition of 1NM-PP1

(figure 6a). This indicates that delocalization of Ark1 from centro-

meres depends on reduction of the Cdc2 activity, but not on

degradation of CPC components. Second, we examined the

localization of Shugoshin (Sgo1), which forms a complex with

PP2A and is essential for its localization at centromeres [70]. Con-

sistent with previous studies [69], Sgo1 localized to centromeres
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in metaphase I-arrested cells. Interestingly, Sgo1 did not alter its

localization at centromeres even when Cdc2 activity was

decreased by 1NM-PP1 (figure 6b). Thus, maintenance of the

Sgo1 localization at centromeres does not require Cdc2 activity,

raising the possibility that APC-mediated Sgo1 degradation

might be a trigger of Sgo1 delocalization from centromeres.
4. Conclusion
The generation of an analogue-sensitive mutant is a powerful

tool that enables chemical inhibition of any kinase of interest.

In general, analogue sensitivity is conferred by introducing a

single amino acid substitution of the ‘gatekeeper’ residue in

the active site. This sometimes causes a partial loss of

kinase function, as in the case of the cdc2-as mutant [17].

The original cdc2-as mutant (F84G) showed defects in

growth at high and low temperature and in meiosis. We

have used natural selection to suppress these defects, which

occurred through an additional mutation at K79E, to generate

the cdc2-asM17 mutant.
A systematic generation of analogue-sensitive mutants of

all essential kinases in fission yeast found that three (of 16)

essential kinases could not be generated (Cdc7, Hsk1 and

Sid1), because an introduction of the analogue-sensitive

mutation caused a significant loss of function [7]. For instance,

it was impossible to create the sid1-as mutant, because replace-

ment of the wild-type sid1þ with the sid1-as mutant gene

caused lethality (Y.A., S.A.K., V.S., M.Y. & M.S. 2011, unpub-

lished data). Those issues, however, might be solved by

applying the method described in this study. Specifically, if

the gatekeeper mutation resides at the end of a b sheet, then

the suppressor mutation could be introduced at the opposite

end of the sheet (figure 3a,b). Alternatively, it might be more

judicious to allow in vivo selection to generate the required

mutant, as we have done here (electronic supplementary

material, figure S1a). The library of mutagenized DNA frag-

ments could be used for transformation of the existing ts (or

other) mutant of the kinase. Transformants viable at the restric-

tive temperature should contain the suppressor mutation in

addition to the gatekeeper mutation.

The in vivo selected cdc2-asM17 mutant permitted us to

undertake experiments that were not possible previously, such



Table 1. Strains used in this study. The origin of the strains is this study, except for JY878 and SP5959 (our stock) and PY328 (a gift from Y. Watanabe).

strain genotype figures

MJ1172 h90 sfi1-CFP-nat leu1 – 32 ura4-D18 ade6-M216 1b – e, 2a – c and electronic supplementary

material, figure S2

MJ1254 h90 cdc2-as sfi1-CFP-nat leu1 – 32 ura4-D18 ade6-M216 1b – e, 2a – c and electronic supplementary

material, figures S1a – c, S2 and S3a – c

MJ1353 h90 cdc2-asM17 sfi1-CFP leu1 – 32 ura4-D18 ade6-M216 1b – e, 2a – c and electronic supplementary

material, figures S1b,c, S2 and S3a – c

MJ1358 h90 cdc2-asM17-bsd sfi1-CFP-nat leu1 – 32 ura4-D18 ade6-M216 1b – e, 2a – c, 3c, 4a and electronic supplementary

material, figures S1c and S2

PY328 h90 rad3 ::LEU2þ leu1 – 32 ura4-D18 ade6-M210 1e

SAK1 hþ leu1 – 32 ura4-D18 ade6-M216 3c

MJ1360 h90 cdc2-as-bsd sfi1-CFP-nat leu1-32 ura4-D18 ade6-M216 4a and electronic supplementary material,

figure S1c

YA1843 h90 cdc2asM17bsd mad2GFPkan mis62mRFPhph sid42ECFPnat leu132 ura4D18 4b,d

YA1829 h90 cdc2asM17bsd nda3(alp12)1828 mad2GFPkan mis62mRFPhph sid42ECFPnat

leu132 ura4D18 ade6M216

4c,d

YA1900 h90 cdc2asM17bsd nda3KM311 cdc13YFPTcdc13kan sid42ECFPnat leu132 ura4D18

ade6

5a,c

YA1893 h90 cdc2asM17bsd nda3KM311 dis2::ura4þ cdc13YFPTcdc13kan sid42ECFPnat

leu132 ura4D18 ade6

5b,c

SAK422 h90 cdc2-asM17-bsd ark1-GFPFH-kan Prad21-slp1-kan Prad21-cut23-kan

z::Padh15-mcherry-atb2-nat leu1-32 ade6-M216

6a

SAK420 h90 cdc2-asM17-bsd sgo1þ-flag-GFP par1–mCherry-hyg Prad21-slp1-kan

Prad21-cut23-kan z::Padh13-CFP-atb2-nat leu1-32 ade6-M216

6b

JY878 h90 leu1-32 ura4-D18 ade6-M216 electronic supplementary material, figures S1b,c

and S3a

SP5959 h – cdc2-as ura4-D18 electronic supplementary material, figure S1a

MJ1346 h90 cdc2-asM1 sfi1-CFP-nat leu1-32 ura4-D18 ade6-M216 electronic supplementary material, figure S1b

MJ1347 h90 cdc2-asM2 sfi1-CFP-nat leu1-32 ura4-D18 ade6-M216 electronic supplementary material, figure S1b

MJ1348 h90 cdc2-asM6 sfi1-CFP-nat leu1-32 ura4-D18 ade6-M216 electronic supplementary material, figures S1b and

S3a

MJ1349 h90 cdc2-asM8 sfi1-CFP-nat leu1-32 ura4-D18 ade6-M216 electronic supplementary material, figures S1b and

S3a – c

MJ1350 h90 cdc2-asM10 sfi1-CFP-nat leu1-32 ura4-D18 ade6-M216 electronic supplementary material, figures S1b,c

and S3a – c

MJ1351 h90 cdc2-asM11 sfi1-CFP-nat leu1-32 ura4-D18 ade6-M216 electronic supplementary material, figures S1b,c

and S3a – c

MJ1352 h90 cdc2-asM12 sfi1-CFP-nat leu1-32 ura4-D18 ade6-M216 electronic supplementary material, figure S1b

MJ1356 h90 cdc2-asM10-bsd sfi1-CFP-nat leu1-32 ura4-D18 ade6-M216 electronic supplementary material, figure S1c

MJ1357 h90 cdc2-asM11-bsd sfi1-CFP-nat leu1-32 ura4-D18 ade6-M216 electronic supplementary material, figure S1c

MJ1359 h90 cdc2þ-bsd leu1-32 ura4-D18 ade6-M216 electronic supplementary material, figure S1c

SAK163 h – cdc2-33 electronic supplementary material, figure S2

MO1893 h90 cdc2-asM17-bsd leu1-32 ura4-D18 ade6-M216 Methods
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as using microtubule-depolymerizing drugs, high and low

temperatures, and during meiosis. This mutant has revealed

an important role of Cdc2/Cdk1 in SAC maintenance, and the

dispensability of Cdc2/Cdk1 for localization of Shugoshin in
meiosis. Although mitotic kinases represented by Cdk1, Polo

and aurora regulate many aspects of mitosis and meiosis, the

availability of this chemical genetic tool will allow us to increase

our understanding of the role of Cdc2/CDK1.
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5. Material and methods
5.1. Yeast genetics and general manipulations
The strains used in this study are listed in table 1. We used

standard methods for fission yeast genetics, as described pre-

viously [72]. Tagging of a single copy of a fluorescent protein

(GFP) at the C-terminus of genes, and insertion of the bsd
marker gene, was performed using standard PCR-based

methods [73,74]. Tagging of multiple tandem copies of fluor-

escent proteins (2mRFP and 2ECFP) at the C-terminus of

genes was performed as previously described [34]. All the

fluorescent protein-fused genes are expressed by the native

promoter and the adh terminator [73], except for cdc13-YFP,

mCherry-atb2 and CFP-atb2 fusion genes. The cdc13-YFP
fusion gene is expressed by the cdc13þ promoter and termin-

ator. The mCherry-atb2 gene is expressed by the Padh15
promoter and the adh terminator, and the CFP-atb2 gene is

expressed by the Padh13 promoter and the adh terminator

[75]. 1NM-PP1 (Calbiochem, CA) was added to media at

the concentration of 2 mM. For figure 1b, living cells were

stained with Calcofluor (Sigma, MO), and the cell length

was measured on the IMAGEJ software (NIH). For the FACS

analysis in figure 1d, the DNA content was measured using

BD FACSCalibur (BD, NJ). For figure 2a–c, homothallic h90

cells were induced to mating, meiosis and sporulation on

sporulation agar plates. After incubation for 24 h at 308C,

cells were fixed with methanol and stained with 40,6-diami-

dino-2-phenylindole (DAPI; Wako Pure Chemicals, Japan),

and the number of nuclei and spores in each ascus were

counted. For the spore viability assay, spores were dissected

by the micromanipulator (Singer Instruments, Somerset, UK),

and the percentage of spores that formed colonies was calcu-

lated. The checkpoint silencing assay in figure 5 was

performed as previously described [61]. The prometaphase-

arrested nda3-KM311 cells at 188C were treated with 1 mM

1NM-PP1 or DMSO. Cells were collected at the indicated

time point, fixed with methanol and stained with DAPI

(Wako Pure Chemicals).

5.2. Creation of the cdc2-asM17 mutant
The creation of the original cdc2-as mutant has been described

previously [17]. A flow chart for the method to generate the

cdc2-asM17 mutant is depicted in the electronic supplemen-

tary material, figure S1a. Briefly, the genomic cdc2-as
mutant gene was amplified from the original mutant [17].

The coding region of cdc2-as with flanking 0.5 kb up/down-

stream regions at both ends (in total 2.2 kb; electronic

supplementary material, figure S1a) was amplified by a stan-

dard PCR method with PrimeSTAR HS DNA polymerase

(Takara-Bio, Japan). The amplified fragment was gel-purified,

and used as the template for the following error-prone PCR.

To induce errors, thermal cycling was performed for 40 cycles

using the Ex Taq polymerase (Takara-Bio) and the same pair

of oligomers used for the first PCR. The amplified fragments

were then used for transformation of the cdc2-as sfi1-CFP-nat
strain MJ1254 (Sfi1-CFP is an SPB marker). Colonies that

grew at 368C were restreaked onto YE5S plates containing

Phloxin B, to visualize suppression of temperature sensitivity.

Cold sensitivity was also tested at 208C. Confirmation of the

analogue sensitivity was done with YE5S plates containing
10 mM 1NM-PP1. The bsd marker gene was inserted 528 bp

downstream of the termination codon of the cdc2 gene. For

figures 3–6, the cdc2-asM17 mutant with bsd insertion was

used and denoted as cdc2-asM17 for simplicity. The sfi1-CFP
SPB marker was removed through backcrossing of the cdc2-
asM17-bsd sfi1-CFP-nat strain (MJ1358) with a wild-type

strain without markers, to yield MO1893.

5.3. Microscopy
Images in figures 1b and 2a were acquired using an Axio Ima-

ger.M2 fluorescence microscope and AXIOVISION software

(Zeiss, Germany). Live-cell imaging methods for figure 4

were described previously [34]. Briefly, live-cell imaging

was performed with the DeltaVision-SoftWoRx system (GE

Healthcare, UK). Cultured cells were mounted on a glass-

bottom dish (Matsunami, Japan) coated with lectin and

filled with minimal medium. Serial section images along

the z-axis were acquired and stacked using the ‘quick projec-

tion’ protocol in SOFTWORX. Temperature-sensitive strains

were observed in a temperature-controlled chamber to main-

tain 368C during observation. MBC (carbendazim; Sigma,

MO) was added to liquid culture at the final concentration

of 50 mg ml21 [76]. 2 mM 1NM-PP1 or DMSO was added to

liquid media during observation. Images in figure 5 and elec-

tronic supplementary material, figure S3a were acquired by

an Axioplan 2 fluorescence microscope (Zeiss) and SLIDEBOOK

software (Leeds Precision, UK). Images in figure 6 were taken

as described previously [77].

5.4. In vitro kinase assay and Western blotting
Schizosaccharomyces pombe protein extract from wild-type and

cdc2-asM17 cells was prepared, and the Cdc2–Cdc13 complex

was purified using Suc1-beads (Millipore, MA). The pull-

downs containing Cdc2–Cdc13 were mixed with histone

H1 (New England BioLabs, UK) as a substrate, in the absence

or presence of 1NM-PP1 (0–103 nM). Samples were subjected

to SDS–PAGE, and the gel was stained with Coomassie bril-

liant blue followed by autoradiography. For Western blotting

in electronic supplementary material, figure S2, extracts or

pulldowns by Suc1-beads were subjected to SDS–PAGE.

The following antibodies were used: anti-Cdc2 monoclonal

(1 : 1000; a gift from Y. Watanabe) and anti-tubulin monoclonal

TAT-1 (1 : 5000; a gift from K. Gull).
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