341 research outputs found

    Present Status of the Theoretical Predictions for the ^(37)Cl Solar-Neutrino Experiment

    Get PDF
    The theoretical predictions for the ^(37)Cl solar-neutrino experiment are summarized and compared with the experimental results of Davis, Harmer, and Hoffman. Three important conclusions about the sun are shown to follow

    Continuum driven winds from super-Eddington stars. A tale of two limits

    Full text link
    Continuum driving is an effective method to drive a strong stellar wind. It is governed by two limits: the Eddington limit and the photon-tiring limit. A star must exceed the effective Eddington limit for continuum driving to overcome the stellar gravity. The photon-tiring limit places an upper limit on the mass loss rate that can be driven to infinity, given the energy available in the radiation field of the star. Since continuum driving does not require the presence of metals in the stellar atmosphere it is particularly suited to removing mass from low- and zero-metallicity stars and can play a crucial part in their evolution. Using a porosity length formalism we compute numerical simulations of super-Eddington, continuum driven winds to explore their behaviour for stars both below and above the photon-tiring limit. We find that below the photon tiring limit, continuum driving can produce a large, steady mass loss rate at velocities on the order of the escape velocity. If the star exceeds the photon-tiring limit, a steady solution is no longer possible. While the effective mass loss rate is still very large, the wind velocity is much smallerComment: to be published in the conference proceedings of: First Stars III, Santa Fe, 200

    Solar models and electron screening

    Get PDF
    We investigate the sensitivity of the solar model to changes in the nuclear reaction screening factors. We show that the sound speed profile as determined by helioseismology certainly rules out changes in the screening factors exceeding more than 10%. A slightly improved solar model could be obtained by enhancing screening by about 5% over the Salpeter value. We also discuss how envelope properties of the Sun depend on screening, too. We conclude that the solar model can be used to help settling the on-going dispute about the ``correct'' screening factors.Comment: accepted for publication by Astron. Astrophy

    Numerical simulations of continuum-driven winds of super-Eddington stars

    Full text link
    We present the results of numerical simulations of continuum-driven winds of stars that exceed the Eddington limit and compare these against predictions from earlier analytical solutions. Our models are based on the assumption that the stellar atmosphere consists of clumped matter, where the individual clumps have a much larger optical thickness than the matter between the clumps. This `porosity' of the stellar atmosphere reduces the coupling between radiation and matter, since photons tend to escape through the more tenuous gas between the clumps. This allows a star that formally exceeds the Eddington limit to remain stable, yet produce a steady outflow from the region where the clumps become optically thin. We have made a parameter study of wind models for a variety of input conditions in order to explore the properties of continuum-driven winds. The results show that the numerical simulations reproduce quite closely the analytical scalings. The mass loss rates produced in our models are much larger than can be achieved by line driving. This makes continuum driving a good mechanism to explain the large mass loss and flow speeds of giant outbursts, as observed in eta Carinae and other luminous blue variable (LBV) stars. Continuum driving may also be important in population III stars, since line driving becomes ineffective at low metalicities. We also explore the effect of photon tiring and the limits it places on the wind parameters.Comment: Accepted for publication by MNRA

    Inhomogeneity in the Supernova Remnant Distribution as the Origin of the PAMELA Anomaly

    Full text link
    Recent measurements of the positron/electron ratio in the cosmic ray (CR) flux exhibits an apparent anomaly, whereby this ratio increases between 10 and 100 GeV. We show that inhomogeneity of CR sources on a scale of order a kpc, can naturally explain this anomaly. If the nearest major CR source is about a kpc away, then low energy electrons (∌1\sim 1 GeV) can easily reach us. At higher energies (≳10\gtrsim 10 GeV), the source electrons cool via synchrotron and inverse-Compton before reaching Earth. Pairs formed in the local vicinity through the proton/ISM interactions can reach Earth also at high energies, thus increasing the positron/electron ratio. A natural origin of source inhomogeneity is the strong concentration of supernovae in the galactic spiral arms. Assuming supernova remnants (SNRs) as the sole primary source of CRs, and taking into account their concentration near the galactic spiral arms, we consistently recover the observed positron fraction between 1 and 100 GeV. ATIC's electron excess at ∌600\sim 600 GeV is explained, in this picture, as the contribution of a few known nearby SNRs. The apparent coincident similarity between the cooling time of electrons at 10 GeV (where the positron/electron ratio upturn), ∌10\sim 10 Myr, and the CRs protons cosmogenic age at the same energy is predicted by this model

    Early evolution of the extraordinary Nova Del 2013 (V339 Del)

    Full text link
    We determine the temporal evolution of the luminosity L(WD), radius R(WD) and effective temperature Teff of the white dwarf (WD) pseudophotosphere of V339 Del from its discovery to around day 40. Another main objective was studying the ionization structure of the ejecta. These aims were achieved by modelling the optical/near-IR spectral energy distribution (SED) using low-resolution spectroscopy (3500 - 9200 A), UBVRcIc and JHKLM photometry. During the fireball stage (Aug. 14.8 - 19.9, 2013), Teff was in the range of 6000 - 12000 K, R(WD) was expanding non-uniformly in time from around 66 to around 300 (d/3 kpc) R(Sun), and L(WD) was super-Eddington, but not constant. After the fireball stage, a large emission measure of 1.0-2.0E+62 (d/3 kpc)**2 cm**(-3) constrained the lower limit of L(WD) to be well above the super-Eddington value. The evolution of the H-alpha line and mainly the transient emergence of the Raman-scattered O VI 1032 A line suggested a biconical ionization structure of the ejecta with a disk-like H I region persisting around the WD until its total ionization, around day 40. It is evident that the nova was not evolving according to the current theoretical prediction. The unusual non-spherically symmetric ejecta of nova V339 Del and its extreme physical conditions and evolution during and after the fireball stage represent interesting new challenges for the theoretical modelling of the nova phenomenon.Comment: 14 pages, 9 figures, 3 tables, accepted for Astronomy and Astrophysic

    Variability in GRBs - A Clue

    Full text link
    We show that external shocks cannot produce a variable GRB, unless they are produced by an extremely narrow jets (angular opening of < ~10^{-4}) or if only a small fraction of the shell emits the radiation and the process is very inefficient. Internal shocks can produce the observed complex temporal structure provided that the source itself is variable. In this case, the observed temporal structure reflects the activity of the ``inner engine'' that drives the bursts. This sets direct constraints on it.Comment: 15 page latex file with 5 PS figure. Complete uuencoded compressed PS file is available at ftp://shemesh.fiz.huji.ac.il or at http://shemesh.fiz.huji.ac.il/papers/SaP_aclue.u

    The Brightest Black Holes

    Full text link
    I suggest that there are two classes of ultraluminous X-ray sources (ULXs), corresponding to super-Eddington mass inflow in two situations: (a) thermal-timescale mass transfer in high-mass X-ray binaries, and (b) long-lasting transient outbursts in low-mass X-ray binaries. These two classes are exemplified by SS433 and microquasars like GRS 1915+105 respectively. The observed ULX population is a varying mixture of the two, depending on the star formation history of the host galaxy. ULXs in galaxies with vigorous star formation (such as the Antennae) are generally SS433--like, while ULXs in elliptical galaxies must be of the microquasar type. The latter probably have significantly anisotropic radiation patterns. They should also be variable, but demonstrating this may require observations over decades. The close analogy between models of X-ray binaries and active galactic nuclei (AGN) suggests that there should exist an apparently super-Eddington class of the latter, which may be the ultrasoft AGN, and a set of X-ray binaries with Doppler--boosted X-ray emission. These are presumably a subset of the ULXs, but remain as yet unidentified.Comment: 4 pages, no figures; accepted for MNRAS Letter

    The porous atmosphere of eta Carinae

    Full text link
    We analyze the wind generated by the great 20 year long super-Eddington outburst of eta-Carinae. We show that using classical stellar atmospheres and winds theory, it is impossible to construct a consistent wind model in which a sufficiently small amount of mass, like the one observed, is shed. One expects the super-Eddington luminosity to drive a thick wind with a mass loss rate substantially higher than the observed one. The easiest way to resolve the inconsistency is if we alleviate the implicit notion that atmospheres are homogeneous. An inhomogeneous atmosphere, or "porous", allows more radiation to escape while exerting a smaller average force. Consequently, such an atmosphere yields a considerably lower mass loss rate for the same total luminosity. Moreover, all the applications of the Eddington Luminosity as a strict luminosity limit should be revised, or at least reanalyzed carefully.Comment: 10 pages, aastex, 3 eps figures, To appear in ApJ Let
    • 

    corecore