184 research outputs found

    Effect of chemical composition on luminescence of thiol-stabilized CdTe nanocrystals

    Get PDF
    Judicious selection of the amount of surfactant during synthesis enables a drastic increase in the photoluminescence efficiency of aqueous CdTe nanocrystals (NCs) stabilized by thioglycolic acid (TGA). Elemental determination of the NCs was undertaken to identify the origin of this effect. The molar ratio of (Te + S) to Cd approached unity when the optimum amount of TGA was used during synthesis, whereas the number of S atoms originating from TGA molecules in one NC (2.6 nm of diameter) remained unchanged at 90 ± 3. This indicates that the core lattice composition at the beginning of synthesis, rather than the surface conditions, affects the photoluminescence efficiency of the NCs even after prolonged refluxing

    CdTe Quantum Dot/Dye Hybrid System as Photosensitizer for Photodynamic Therapy

    Get PDF
    We have studied the photodynamic properties of novel CdTe quantum dots—methylene blue hybrid photosensitizer. Absorption spectroscopy, photoluminescence spectroscopy, and fluorescence lifetime imaging of this system reveal efficient charge transfer between nanocrystals and the methylene blue dye. Near-infrared photoluminescence measurements provide evidence for an increased efficiency of singlet oxygen production by the methylene blue dye. In vitro studies on the growth of HepG2 and HeLa cancerous cells were also performed, they point toward an improvement in the cell kill efficiency for the methylene blue-semiconductor nanocrystals hybrid system

    Microwave-assisted synthesis of water-dispersed CdTe/CdSe core/shell type II quantum dots

    Get PDF
    A facile synthesis of mercaptanacid-capped CdTe/CdSe (core/shell) type II quantum dots in aqueous solution by means of a microwave-assisted approach is reported. The results of X-ray diffraction and high-resolution transmission electron microscopy revealed that the as-prepared CdTe/CdSe quantum dots had a core/shell structure with high crystallinity. The core/shell quantum dots exhibit tunable fluorescence emissions by controlling the thickness of the CdSe shell. The photoluminescent properties were dramatically improved through UV-illuminated treatment, and the time-resolved fluorescence spectra showed that there is a gradual increase of decay lifetime with the thickness of CdSe shell

    Bi-Functional Silica Nanoparticles Doped with Iron Oxide and CdTe Prepared by a Facile Method

    Get PDF
    Cadmium telluride (CdTe) and iron oxide nanoparticles doped silica nanospheres were prepared by a multistep method. Iron oxide nanoparticles were first coated with silica and then modified with amino group. Thereafter, CdTe nanoparticles were assembled on the particle surfaces by their strong interaction with amino group. Finally, an outer silica shell was deposited. The final products were characterized by X-ray powder diffraction, transmission electron microscopy, vibration sample magnetometer, photoluminescence spectra, Fourier transform infrared spectra (FT-IR), and fluorescent microscopy. The characterization results showed that the final nanomaterial possessed a saturation magnetization of about 5.8 emu g−1and an emission peak at 588 nm when the excitation wavelength fixed at 380 nm

    Lactic acid as a systemic product and biomarker of physical load

    Get PDF
    This paper presents an up-to-date review of research data on the specific features of lactic acid metabolism and its role as an effector of vital regulatory mechanisms. Lactic acid is an alpha-hydroxy monocarboxylic acid. Physical loads of submaximal intensity and some diseases can cause dramatic increase of lactic acid content in the body fluids. The excessive lactate is removed from the working muscle and either metabolized by other tissues or excreted from the human body. Alteration of the lactate-pyruvate balance is one of the main markers of the development of cardiac hypertrophy and failure. The redistribution of lactate between the cells producing it and the cells that metabolize it is vital to maintain a stable pH level in tissues and hold lactate in the body since this compound is an important energy source as well as an effector of important regulatory mechanisms. The quantification of lactate is used to assess general physical capabilities of the human body, the intensity of physical load and the rate of recovery in physical rehabilitation. Specialized proteins, which refer to the group of monocarboxylate transporters, are involved in lactate excretion and absorption by cells. The presence of various types of transporters in cell membranes that differ in affinity to lactate and the direction of transport ensures a rapid redistribution of lactic acid throughout the body and regulates the intensity and direction of its metabolism according to the physiological needs. Efficient transfer and redistribution of lactate between different tissues of the body is essential, given the participation of lactate in several important regulatory mechanisms. As an effector, lactate is involved in the regulation of angiogenesis, differentiation of myosatellitocytes, regeneration of muscle fibers, polarization of macrophages and the course of inflammatory processes. Besides, lactate participates in epigenetic mechanisms of muscle tissue metabolism regulation. Therefore, lactate is one of the key metabolites in the human body

    Learning form Nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications.

    Get PDF
    The performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimental and theoretical analysis of magnetic hyperthermia, a rapidly developing technique in medical research and oncology. Experimentally, we demonstrate that single-domain cubic iron oxide particles resembling bacterial magnetosomes have superior magnetic heating efficiency compared to spherical particles of similar sizes. Monte Carlo simulations at the atomic level corroborate the larger anisotropy of the cubic particles in comparison with the spherical ones, thus evidencing the beneficial role of surface anisotropy in the improved heating power. Moreover we establish a quantitative link between the particle assembling, the interactions and the heating properties. This knowledge opens new perspectives for improved hyperthermia, an alternative to conventional cancer therapies

    Secondary crystalline phases identification in Cu2ZnSnSe4 thin films: contributions from Raman scattering and photoluminescence

    Get PDF
    In this work, we present the Raman peak positions of the quaternary pure selenide compound Cu2ZnSnSe4 (CZTSe) and related secondary phases that were grown and studied under the same conditions. A vast discussion about the position of the X-ray diffraction (XRD) reflections of these compounds is presented. It is known that by using XRD only, CZTSe can be identified but nothing can be said about the presence of some secondary phases. Thin films of CZTSe, Cu2SnSe3, ZnSe, SnSe, SnSe2, MoSe2 and a-Se were grown, which allowed their investigation by Raman spectroscopy (RS). Here we present all the Raman spectra of these phases and discuss the similarities with the spectra of CZTSe. The effective analysis depth for the common back-scattering geometry commonly used in RS measurements, as well as the laser penetration depth for photoluminescence (PL) were estimated for different wavelength values. The observed asymmetric PL band on a CZTSe film is compatible with the presence of CZTSe single-phase and is discussed in the scope of the fluctuating potentials’ model. The estimated bandgap energy is close to the values obtained from absorption measurements. In general, the phase identification of CZTSe benefits from the contributions of RS and PL along with the XRD discussion.info:eu-repo/semantics/publishedVersio

    Molecular Chemistry to the Fore: New Insights into the Fascinating World of Photoactive Colloidal Semiconductor Nanocrystals

    Get PDF
    Colloidal semiconductor nanocrystals possess unique properties that are unmatched by other chromophores such as organic dyes or transition-metal complexes. These versatile building blocks have generated much scientific interest and found applications in bioimaging, tracking, lighting, lasing, photovoltaics, photocatalysis, thermoelectrics, and spintronics. Despite these advances, important challenges remain, notably how to produce semiconductor nanostructures with predetermined architecture, how to produce metastable semiconductor nanostructures that are hard to isolate by conventional syntheses, and how to control the degree of surface loading or valence per nanocrystal. Molecular chemists are very familiar with these issues and can use their expertise to help solve these challenges. In this Perspective, we present our group\u27s recent work on bottom-up molecular control of nanoscale composition and morphology, low-temperature photochemical routes to semiconductor heterostructures and metastable phases, solar-to-chemical energy conversion with semiconductor-based photocatalysts, and controlled surface modification of colloidal semiconductors that bypasses ligand exchange
    corecore