331 research outputs found

    Evidence for charge orbital and spin stripe order in an overdoped manganite

    Full text link
    We present diffraction data on a single-layered manganite La(0.42)Sr(1.58)MnO4 with hole doping (x>0.5). Overdoped La(0.42)Sr(1.58)MnO4 exhibits a complex ordering of charges, orbitals and spins. Single crystal neutron diffraction experiments reveal three incommensurate and one commensurate order parameters to be tightly coupled. The position and the shape of the distinct superstructure scattering points to a stripe arrangement in which ferromagnetic zigzag chains are disrupted by additional Mn4+ stripes

    Electric-dipole active two-magnon excitation in {\textit{ab}} spiral spin phase of a ferroelectric magnet Gd0.7_{\textbf{0.7}}Tb0.3_{\textbf{0.3}}MnO3_{\textbf 3}

    Full text link
    A broad continuum-like spin excitation (1--10 meV) with a peak structure around 2.4 meV has been observed in the ferroelectric abab spiral spin phase of Gd0.7_{0.7}Tb0.3_{0.3}MnO3_3 by using terahertz (THz) time-domain spectroscopy. Based on a complete set of light-polarization measurements, we identify the spin excitation active for the light EE vector only along the a-axis, which grows in intensity with lowering temperature even from above the magnetic ordering temperature but disappears upon the transition to the AA-type antiferromagnetic phase. Such an electric-dipole active spin excitation as observed at THz frequencies can be ascribed to the two-magnon excitation in terms of the unique polarization selection rule in a variety of the magnetically ordered phases.Comment: 11 pages including 3 figure

    Crystal and magnetic structure of La_{1-x}Sr_{1+x}MnO_{4} : role of the orbital degree of freedom

    Full text link
    The crystal and magnetic structure of La_{1-x}Sr_{1+x}MnO_4 (0<x<0.7) has been studied by diffraction techniques and high resolution capacitance dilatometry. There is no evidence for a structural phase transition like those found in isostructural cuprates or nickelates, but there are significant structural changes induced by the variation of temperature and doping which we attribute to a rearrangement of the orbital occupation.Comment: 8 pages, 6 figures, submitted to PR

    Thermal conductivity of R2CuO4, with R = La, Pr and Gd

    Full text link
    We present measurements of the in-plane kappa_ab and out-of-plane kappa_c thermal conductivity of Pr2CuO4 and Gd2CuO4 single crystals. The anisotropy gives strong evidence for a large contribution of magnetic excitations to kappa_ab i.e. for a heat current within the CuO2 planes. However, the absolute values of kappa_mag are lower than previous results on La2CuO4. These differences probably arise from deviations from the nominal oxygen stoichiometry. This has a drastic influence on kappa_mag, which is shown by an investigation of a La2CuO4+delta polycrystal.Comment: 2 pages, 1 figure; presented at SCES200

    In-depth investigation of the long-term strength and leaching behaviour of inorganic polymer mortars containing green liquor dregs

    Get PDF
    Green liquor dregs are the most challenging waste stream coming from the pulp and paper industry. Despite tremendous efforts, there are not currently any viable recycling alternatives for this massively produced waste (2 Mt/year), which inevitably ends up in landfills. Urgent actions must be undertaken to tackle this. In this work, a substantial amount of dregs was incorporated into eco-friendly, waste-based inorganic polymer (geopolymer) mortars as fine filler. Then, and for the first time, the long-term strength performance (up to 270 days) and heavy metals leaching behaviour of the dregs-containing mortars was evaluated. The effect of the mixture composition and dregs incorporation content on the fresh- and hardened-state properties of the mortars was also studied. Dregs were found to increase the initial and final setting time of the slurries, thus extending the open time before their in-situ application. The use of dregs as fine filler effectively enhances the compressive strength of the mortars, and decreases their water absorption levels. These eco-friendly building materials showed excellent long-term performance, as their strength continuously increases up to the 270th day (after mixture), and no signs of efflorescence formation were detected. Moreover, the heavy metals leaching levels of the mortars were well below the contamination limits in soil, which demonstrates the feasibility of this recycling methodology.publishe

    Unravelling the Affinity of Alkali-Activated Fly Ash Cubic Foams towards Heavy Metals Sorption

    Get PDF
    In this work, alkali-activated fly ash-derived foams were produced at room temperature by direct foaming using aluminum powder. The 1 cm3 foams (cubes) were then evaluated as adsorbents to extract heavy metals from aqueous solutions. The foams’ selectivity towards lead, cadmium, zinc, and copper ions was evaluated in single, binary, and multicomponent ionic solutions. In the single ion assays, the foams showed much higher affinity towards lead, compared to the other heavy metals; at 10 ppm, the removal efficiency reached 91.9% for lead, 83.2% for cadmium, 74.6% for copper, and 64.6% for zinc. The greater selectivity for lead was also seen in the binary tests. The results showed that the presence of zinc is detrimental to cadmium and copper sorption, while for lead it mainly affects the sorption rate, but not the ultimate removal efficiency. In the multicomponent assays, the removal efficiency for all the heavy metals was lower than the values seen in the single ion tests. However, the superior affinity for lead was preserved. This study decreases the existing knowledge gap regarding the potential of alkali-activated materials to act as heavy metals adsorbents under different scenarios

    Profiling the molecular destruction rates of temperature and humidity as well as the turbulent kinetic energy dissipation in the convective boundary layer

    Get PDF
    A simultaneous deployment of Doppler, temperature, and water-vapor lidars is able to provide profiles of molecular destruction rates and turbulent kinetic energy (TKE) dissipation in the convective boundary layer (CBL). Horizontal wind profiles and profiles of vertical wind, temperature, and moisture fluctuations are combined, and transversal temporal autocovariance functions (ACFs) are determined for deriving the dissipation and molecular destruction rates. These are fundamental loss terms in the TKE as well as the potential temperature and mixing ratio variance equations. These ACFs are fitted to their theoretical shapes and coefficients in the inertial subrange. Error bars are estimated by a propagation of noise errors. Sophisticated analyses of the ACFs are performed in order to choose the correct range of lags of the fits for fitting their theoretical shapes in the inertial subrange as well as for minimizing systematic errors due to temporal and spatial averaging and micro- and mesoscale circulations. We demonstrate that we achieve very consistent results of the derived profiles of turbulent variables regardless of whether 1 or 10 s time resolutions are used. We also show that the temporal and spatial length scales of the fluctuations in vertical wind, moisture, and potential temperature are similar with a spatial integral scale of ≈160 m at least in the mixed layer (ML). The profiles of the molecular destruction rates show a maximum in the interfacial layer (IL) and reach values of ϵm≃7×10-4 g2 kg−2 s−1 for mixing ratio and ϵθ≃1.6×10-3 K2 s−1 for potential temperature. In contrast, the maximum of the TKE dissipation is reached in the ML and amounts to ≃10-2 m2 s−3. We also demonstrate that the vertical wind ACF coefficient kw∝w′2‾ and the TKE dissipation ϵ∝w′2‾3/2. For the molecular destruction rates, we show that ϵm∝m′2‾w′2‾1/2 and ϵθ∝θ′2‾w′2‾1/2. These equations can be used for parameterizations of ϵ, ϵm, and ϵθ. All noise error bars are derived by error propagation and are small enough to compare the results with previous observations and large-eddy simulations. The results agree well with previous observations but show more detailed structures in the IL. Consequently, the synergy resulting from this new combination of active remote sensors enables the profiling of turbulent variables such as integral scales, variances, TKE dissipation, and the molecular destruction rates as well as deriving relationships between them. The results can be used for the parameterization of turbulent variables, TKE budget analyses, and the verification of large-eddy simulations.</p

    Novos materiais de construção com tecnologias avançadas

    Get PDF
    Este artigo pretende apenas dar um contributo, assinalando alguns exemplos em que se tem vindo a trabalhar e que refletem o uso de tecnologias avançadas na formulação e funcionalidade de materiais de construção tradicionais. Um exemplo claro é o uso de aditivos que induzem novas funções e que muitos deles pertencem ao grupo denominado como nanomateriais. A sua adição coloca quase sempre problemas de incorporação e que requerem um trabalho de ajuste das formulações e comportamentos no estado fresco ou endurecido. Este trabalho de investigação é muitas vezes essencial para a otimização das funções que se pretendem que os materiais de construção venham a demonstrar. Neste grupo de investigação, resultante da cooperação entre centros de I&D e empresas em projetos de colaboração diversos ao longo dos últimos anos, tem-se vindo a focar na introdução de novas funções em materiais de construção tradicionais, para que ganhem um papel ativo em domínios como o do conforto térmico ou da qualidade ambiental, dois pilares essenciais para uma construção mais sustentável
    corecore