286 research outputs found

    Revascularization of an Excisional Wound in Gingiva and Oral Mucosa. A Scanning Electron Microscopic Study Using Corrosion Casts in Rats

    Get PDF
    The purpose of this study was to examine microvascular regeneration associated with gingival wound healing. A full-thickness piece of gingiva and oral mucosa was excised along the palatal aspect of the right maxillary first and second molars in 20 young Wistar rats. The contralateral side served as unoperated control. After 2, 4, 7, 10 or 20 days of healing, microvascular corrosion casts were produced and examined by scanning electron microscopy. At 2 days, vessels surrounding the wound were dilated and impressions representing sites of leukocyte margination were prominent in the walls of venules. Capillary buds were emerging from venules and capillaries. At 4 days, the vessel buds had lengthened and connected in pairs to produce capillary loops. At 7 days, new vessels extended deeply into the wound space, mainly from the medial side, in a palisade-like pattern. At 10 days, the denuded bone surface was still not completely revascularized and Volkman\u27s canals opening to the wound area were empty. At 20 days, the bone surface was covered by large, irregular vessels which originated mainly from the palatal mucosa. The periodontal ligament was less important in the tissue re-pair process, while the bony vasculature contributed little or not at all to revascularization of the healing gingiva and palatal mucosa

    The Cryptococcus neoformans Rim101 Transcription Factor Directly Regulates Genes Required for Adaptation to the Host

    Get PDF
    The Rim101 protein is a conserved pH-responsive transcription factor that mediates important interactions between several fungal pathogens and the infected host. In the human fungal pathogen Cryptococcus neoformans, the Rim101 protein retains conserved functions to allow the microorganism to respond to changes in pH and other host stresses. This coordinated cellular response enables this fungus to effectively evade the host immune response. Preliminary studies suggest that this conserved transcription factor is uniquely regulated in C. neoformans both by the canonical pH-sensing pathway and by the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. Here we present comparative transcriptional data that demonstrate a strong concordance between the downstream effectors of PKA and Rim101. To define Rim101-dependent gene expression during a murine lung infection, we used nanoString profiling of lung tissue infected with a wild-type or rim101Δ mutant strain. In this setting, we demonstrated that Rim101 controls the expression of multiple cell wall-biosynthetic genes, likely explaining the enhanced immunogenicity of the rim101Δ mutant. Despite its divergent upstream regulation, the C. neoformans Rim101 protein recognizes a conserved DNA binding motif. Using these data, we identified direct targets of this transcription factor, including genes involved in cell wall regulation. Therefore, the Rim101 protein directly controls cell wall changes required for the adaptation of C. neoformans to its host environment. Moreover, we propose that integration of the cAMP/PKA and pH-sensing pathways allows C. neoformans to respond to a broad range of host-specific signals

    Quantifying the efficiency of hydroxyapatite mineralising peptides

    Get PDF
    We present a non-destructive analytical calibration tool to allow quantitative assessment of individual calcium phosphates such as hydroxyapatite (HAP) from mixtures including brushite. Many experimental approaches are used to evaluate the mineralising capabilities of biomolecules including peptides. However, it is difficult to quantitatively compare the efficacy of peptides in the promotion of mineralisation when inseparable mixtures of different minerals are produced. To address this challenge, a series of hydroxyapatite and brushite mixtures were produced as a percent/weight (0–100%) from pure components and multiple (N=10) XRD patterns were collected for each mixture. A linear relationship between the ratio of selected peak heights and the molar ratio was found. Using this method, the mineralising capabilities of three known hydroxyapatite binding peptides, CaP(S) STLPIPHEFSRE, CaP(V) VTKHLNQISQSY and CaP(H) SVSVGMKPSPRP, was compared. All three directed mineralisation towards hydroxyapatite in a peptide concentration dependent manner. CaP(V) was most effective at inducing hydroxyapatite formation at higher reagent levels (Ca2+ = 200mM), as also seen with peptide-silk chimeric materials, whereas CaP(S) was most effective when lower concentrations of calcium (20mM) and phosphate were used. The approach can be extended to investigate HAP mineralisation in the presence of any number of mineralisation promoters or inhibitors

    In vitro evaluation of various bioabsorbable and nonresorbable barrier membranes for guided tissue regeneration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different types of bioabsorbable and nonresorbable membranes have been widely used for guided tissue regeneration (GTR) with its ultimate goal of regenerating lost periodontal structures. The purpose of the present study was to evaluate the biological effects of various bioabsorbable and nonresorbable membranes in cultures of primary human gingival fibroblasts (HGF), periodontal ligament fibroblasts (PDLF) and human osteoblast-like (HOB) cells <it>in vitro</it>.</p> <p>Methods</p> <p>Three commercially available collagen membranes [TutoDent<sup>® </sup>(TD), Resodont<sup>® </sup>(RD) and BioGide<sup>® </sup>(BG)] as well as three nonresorbable polytetrafluoroethylene (PTFE) membranes [ACE (AC), Cytoplast<sup>® </sup>(CT) and TefGen-FD<sup>® </sup>(TG)] were tested. Cells plated on culture dishes (CD) served as positive controls. The effect of the barrier membranes on HGF, PDLF as well as HOB cells was assessed by the Alamar Blue fluorometric proliferation assay after 1, 2.5, 4, 24 and 48 h time periods. The structural and morphological properties of the membranes were evaluated by scanning electron microscopy (SEM).</p> <p>Results</p> <p>The results showed that of the six barriers tested, TD and RD demonstrated the highest rate of HGF proliferation at both earlier (1 h) and later (48 h) time periods (<it>P </it>< 0.001) compared to all other tested barriers and CD. Similarly, TD, RD and BG had significantly higher numbers of cells at all time periods when compared with the positive control in PDLF culture (<it>P </it>≤ 0.001). In HOB cell culture, the highest rate of cell proliferation was also calculated for TD at all time periods (<it>P </it>< 0.001). SEM observations demonstrated a microporous structure of all collagen membranes, with a compact top surface and a porous bottom surface, whereas the nonresorbable PTFE membranes demonstrated a homogenous structure with a symmetric dense skin layer.</p> <p>Conclusion</p> <p>Results from the present study suggested that GTR membrane materials, per se, may influence cell proliferation in the process of periodontal tissue/bone regeneration. Among the six membranes examined, the bioabsorbable membranes demonstrated to be more suitable to stimulate cellular proliferation compared to nonresorbable PTFE membranes.</p

    Experimental Animal Models in Periodontology: A Review

    Get PDF
    In periodontal research, animal studies are complementary to in vitro experiments prior to testing new treatments. Animal models should make possible the validation of hypotheses and prove the safety and efficacy of new regenerating approaches using biomaterials, growth factors or stem cells. A review of the literature was carried out by using electronic databases (PubMed, ISI Web of Science). Numerous animal models in different species such as rats, hamsters, rabbits, ferrets, canines and primates have been used for modeling human periodontal diseases and treatments. However, both the anatomy and physiopathology of animals are different from those of humans, making difficult the evaluation of new therapies. Experimental models have been developed in order to reproduce major periodontal diseases (gingivitis, periodontitis), their pathogenesis and to investigate new surgical techniques. The aim of this review is to define the most pertinent animal models for periodontal research depending on the hypothesis and expected results

    Pre-treatment of Malaysian agricultural wastes toward biofuel production

    Get PDF
    Various renewable energy technologies are under considerable interest due to the projected depletion of our primary sources of energy and global warming associated with their utilizations. One of the alternatives under focus is renewable fuels produced from agricultural wastes. Malaysia, being one of the largest producers of palm oil, generates abundant agricultural wastes such as fibers, shells, fronds, and trunks with the potential to be converted to biofuels. However, prior to conversion of these materials to useful products, pre-treatment of biomass is essential as it influences the energy utilization in the conversion process and feedstock quality. This chapter focuses on pre-treatment technology of palm-based agriculture waste prior to conversion to solid, liquid, and gas fuel. Pre-treatment methods can be classified into physical, thermal, biological, and chemicals or any combination of these methods. Selecting the most suitable pre-treatment method could be very challenging due to complexities of biomass properties. Physical treatment involves grinding and sieving of biomass into various particle sizes whereas thermal treatment consists of pyrolysis and torrefaction processes. Additionally biological and chemical treatment using enzymes and chemicals to derive lignin from biomass are also discussed
    corecore