260 research outputs found

    Peering through the veil: near-infrared photometry and extinction for the Galactic nuclear star cluster

    Full text link
    The aims of this work are to provide accurate photometry in multiple near-infrared broadband filters, to determine the power-law index of the extinction-law toward the central parsec of the Galaxy, to provide measurements of the absolute extinction toward the Galactic center, and finally to measure the spatial variability of extinction on arcsecond scales.We use adaptive optics observations of the central parsec of the Milky Way. Absolute values for the extinction in the H, Ks, and L'-bands as well as of the power-law indices of the H to Ks and Ks to L' extinction-laws are measured based on the well-known properties of red clump stars. Extinction maps are derived based on H-Ks and Ks-L' colors. We present Ks-band photometry for ~7700 stars (H and L' photometry for a subset). From a number of recently published values we compute a mean distance of the Galactic center of R_0=8.03+-0.15 kpc, which has an uncertainty of just 2%. Based on this R_0 and on the RC method, we derive absolute mean extinction values toward the central parsec of the Galaxy of A_H=4.48+-0.13 mag, A_Ks=2.54+-0.12$ mag, and A_L'=1.27+-0.18 mag. We estimate values of the power-law indices of the extinction-law of alpha_{H-Ks}=2.21+-0.24 and alpha_{Ks-L'}=1.34+-0.29. A Ks-band extinction map for the Galactic center is computed based on this extinction law and on stellar H-Ks colors. Mean extinction values in a circular region with 0.5" radius centered on Sagittarius A* are A_{H, SgrA*}=4.35+-0.12, A_{Ks, SgrA*}=2.46+-0.03, and A_{L', SgrA*}=1.23+-0.08.Comment: accepted for publication by Astronomy & Astrophysics; please contact RS for higher quality figure

    Stellar Orbits Near Sagittarius A*

    Get PDF
    We present new SHARP/NTT stellar proper motion and accelaration data covering an interval from 1992 to 2000: 1) We combine the high precision but shorter time scale NIRC/Keck data with the lower precision but longer time scale SHARP/NTT data set; 2) We statistically correct the observed accelerations for geometrical projection effects; 3) We exclude star S8 from the analysis of the amount and position of the central mass. We show that the stars S2, and most likely S1 and S8 as well, are on bound, fairly inclined (60o<i<80o60^o<i<80^o), and eccentric (0.4<e<0.950.4<e<0.95) orbits around a central dark mass. The combination of both data sets results in a position of this central mass of 4824+54^{+54}_{-24} masmas E and 1861+42^{+42}_{-61} masmas S of the nominal radio position of Sgr A*. The mean statistically corrected enclosed mass derived from accelerations is M_acc=(5 +/- 3) x 10^6 solar masses with current radial separations of S1 and S2 from SgrA* of about 810mpc8-10 mpc. This enclosed mass estimate is derived from individual stellar orbits as close to the massive black hole at the center of the Milky Way as currently possible. Although the uncertainties are large this estimate is fully consistent with the enclosed mass range of (2.6-3.3)x10^6 solar masses derived by Genzel et al. (2000) from radial and/or proper motion velocities of a homogenized sample of sources.Comment: 32 pages, 15 figures, accepted by MNRA

    The Shortest Known Period Star Orbiting our Galaxy's Supermassive Black Hole

    Get PDF
    Stars with short orbital periods at the center of our galaxy offer a powerful and unique probe of a supermassive black hole. Over the past 17 years, the W. M. Keck Observatory has been used to image the Galactic center at the highest angular resolution possible today. By adding to this data set and advancing methodologies, we have detected S0-102, a star orbiting our galaxy's supermassive black hole with a period of just 11.5 years. S0-102 doubles the number of stars with full phase coverage and periods less than 20 years. It thereby provides the opportunity with future measurements to resolve degeneracies in the parameters describing the central gravitational potential and to test Einstein's theory of General Relativity in an unexplored regime.Comment: Science, in press (published Oct 5, 2012). See Science Online for the Supplementary Material, or here: http://www.astro.ucla.edu/~ghezgroup/gc/research/S02_S0102_orbits.htm

    Stellar dynamics in the central arcsecond of our galaxy

    Full text link
    We present proper motions for >>40 stars at projected distances 1.2\leq1.2'' from Sagittarius A* (Sgr A*). We find evidence on a 2σ\geq2\sigma level for radial anisotropy of the cluster of stars within 11'' of Sgr A*. We find no evidence for a stationary source or variable source at the position of Sgr A*. We confirm/find accelerated motion for 6 stars, with 4 stars having passed the pericenter of their orbits during the observed time span. We calculated/constrained the orbital parameters of these stars. All orbits have moderate to high eccentricities. We discuss the possible bias in detecting preferentially orbits with high eccentricities. We find that the center of acceleration for all the orbits coincides with the radio position of Sgr A*. From the orbit of the star S2, the currently most tightly constrained one, we determine the mass of Sgr A* to be 3.3±0.7×1063.3\pm0.7\times10^{6}M_{\odot} and its position to 2.0±2.42.0\pm2.4 mas East and 2.7±4.52.7\pm4.5 mas South of the nominal radio position. The mass estimate for the central dark mass from the orbit of S2 is fully consistent with the mass estimate of 3.4±0.5×1063.4\pm0.5\times10^{6}M_{\odot} obtained from stellar proper motions within 1.21.2'' of Sgr A* using a Leonard-Merritt mass estimator. We find that radio astronomical observations of the proper motion of Sgr A* in combination with its intrinsic source size place at the moment the tightest constraints on the mass density of Sgr A*, which must exceed ρSgrA>3×1019Mpc3\rho_{\mathrm{Sgr A*}}>3\times10^{19}\mathrm{M}_{\odot}\mathrm{pc}^{-3}.Comment: 51 pages, 16 Figures, reviewed ms submitted to ap

    The Galactic centre mini-spiral in the mm-regime

    Get PDF
    The mini-spiral is a feature of the interstellar medium in the central ~2 pc of the Galactic center. It is composed of several streamers of dust and ionised and atomic gas with temperatures between a few 100 K to 10^4 K. There is evidence that these streamers are related to the so-called circumnuclear disk of molecular gas and are ionized by photons from massive, hot stars in the central parsec. We attempt to constrain the emission mechanisms and physical properties of the ionized gas and dust of the mini-spiral region with the help of our multiwavelength data sets. Our observations were carried out at 1.3 mm and 3 mm with the mm interferometric array CARMA in California in March and April 2009, with the MIR instrument VISIR at ESO's VLT in June 2006, and the NIR Br-gamma with VLT NACO in August 2009. We present high resolution maps of the mini-spiral, and obtain a spectral index of 0.5 for Sgr A*, indicating an inverted synchrotron spectrum. We find electron densities within the range 0.8-1.5x10^4 cm-3 for the mini-spiral from the radio continuum maps, along with a dust mass contribution of ~0.25 solar masses from the MIR dust continuum, and extinctions ranging from 1.8-3 at 2.16 micron in the Br-gamma line. We observe a mixture of negative and positive spectral indices in our 1.3 mm and 3 mm observations of the extended emission of the mini-spiral, which we interpret as evidence that there are a range of contributions to the thermal free-free emission by the ionized gas emission and by dust at 1.3 mm.Comment: 9 pages, 11 figures, accepted to A&

    A strongly magnetized pulsar within grasp of the Milky Way's supermassive black hole

    Full text link
    The center of our Galaxy hosts a supermassive black hole, Sagittarius (Sgr) A*. Young, massive stars within 0.5 pc of SgrA* are evidence of an episode of intense star formation near the black hole a few Myr ago, which might have left behind a young neutron star traveling deep into SgrA*'s gravitational potential. On 2013 April 25, a short X-ray burst was observed from the direction of the Galactic center. Thanks to a series of observations with the Chandra and the Swift satellites, we pinpoint the associated magnetar at an angular distance of 2.4+/-0.3 arcsec from SgrA*, and refine the source spin period and its derivative (P=3.7635537(2) s and \dot{P} = 6.61(4)x10^{-12} s/s), confirmed by quasi simultaneous radio observations performed with the Green Bank (GBT) and Parkes antennas, which also constrain a Dispersion Measure of DM=1750+/-50 pc cm^{-3}, the highest ever observed for a radio pulsar. We have found that this X-ray source is a young magnetar at ~0.07-2 pc from SgrA*. Simulations of its possible motion around SgrA* show that it is likely (~90% probability) in a bound orbit around the black hole. The radiation front produced by the past activity from the magnetar passing through the molecular clouds surrounding the Galactic center region, might be responsible for a large fraction of the light echoes observed in the Fe fluorescence features.Comment: ApJ Letters in pres

    The formation history of our Galaxy's nuclear stellar disc constrained from HST observations of the Quintuplet field

    Full text link
    Until recently it was thought that the nuclear stellar disc at the centre of our Galaxy was formed via quasi-continuous star formation over billions of years. However, an analysis of GALACTICNUCLEUS survey data indicates that >80% of the mass of the stellar disc formed at least 8 Gyr ago and about 5% roughly 1 Gyr ago. Our aim is to derive new constraints on the formation history of the nuclear stellar disc. We analysed a catalogue of HST/WFC3-IR observations of the Quintuplet cluster field. From this catalogue, we selected about 24000 field stars that probably belong to the nuclear stellar disc. We used red clump giants to deredden the sample and fit the resulting F153M luminosity function with a linear combination of theoretical luminosity functions created from different stellar evolutionary models. We find that >70% of the stellar population in the nuclear disc probably formed more than 10 Gyr ago, while ~15% formed in an event (or series of events) ~1Gyr ago. Up to 10% of the stars appear to have formed in the past tens to hundreds of Myr. These results do not change significantly for reasonable variations in the assumed mean metallicity, sample selection, reddening correction, or stellar evolutionary models. We confirm previous work that changed the formation paradigm for stars in the Galactic Centre. The nuclear stellar disc is indeed a very old structure. There seems to have been little star formation activity between its formation and about 1 Gyr ago.Comment: Accepted for publication in A&
    corecore