575 research outputs found

    Molecular Mechanisms by which Tetrahydrofuran Affects CO₂ Hydrate Growth: Implications for Carbon Storage

    Get PDF
    Gas hydrates have attracted siginifcant fundamental and applied interests due to their important role in various technological and enviromental processes. More recently, gas hydrates have shown potential applications for greenhouse gas capture and storage. To facilitate the latter application, introducing chemical additives into clathrate hydrates could help to enhance hydrate formation/growth rates, provided the gas storage capacity is not reduced. Employing equilibrium molecular dynamics, we study the impact of tetrahydrofuran (THF) on the kinetics of carbon dioxide (CO₂) hydrate growth/dissociation and on the CO₂ storage capacity of hydrates. Our simulations reproduce experimental data for CO₂ and CO₂+THF hydrates at selected operating conditions. The simulated results confirm that THF in stoichiometric concentration does reduce CO₂ storage capacity. This is not only due to the shortage of CO₂ trapping in sII hydrate 5^{12} cages, but also because of the favored THF occupancy in hydrate cages due to preferential THF−water hydrogen bonds. An analysis of the dynamical properties for CO₂ and THF at the hydrate-liquid interface reveals that THF can expedite CO₂ diffusion yielding a shift in the conditions conducive to CO₂ hydrate growth and stability to lower pressures and higher temperatures compared to systems without THF. These simulation results augment literature experimental observations, as they provide needed insights into the molecular mechanisms that can be adjusted to achieve optimal CO₂ storage in hydrates

    Sheared bioconvection in a horizontal tube

    Full text link
    The recent interest in using microorganisms for biofuels is motivation enough to study bioconvection and cell dispersion in tubes subject to imposed flow. To optimize light and nutrient uptake, many microorganisms swim in directions biased by environmental cues (e.g. phototaxis in algae and chemotaxis in bacteria). Such taxes inevitably lead to accumulations of cells, which, as many microorganisms have a density different to the fluid, can induce hydrodynamic instabilites. The large-scale fluid flow and spectacular patterns that arise are termed bioconvection. However, the extent to which bioconvection is affected or suppressed by an imposed fluid flow, and how bioconvection influences the mean flow profile and cell transport are open questions. This experimental study is the first to address these issues by quantifying the patterns due to suspensions of the gravitactic and gyrotactic green biflagellate alga Chlamydomonas in horizontal tubes subject to an imposed flow. With no flow, the dependence of the dominant pattern wavelength at pattern onset on cell concentration is established for three different tube diameters. For small imposed flows, the vertical plumes of cells are observed merely to bow in the direction of flow. For sufficiently high flow rates, the plumes progressively fragment into piecewise linear diagonal plumes, unexpectedly inclined at constant angles and translating at fixed speeds. The pattern wavelength generally grows with flow rate, with transitions at critical rates that depend on concentration. Even at high imposed flow rates, bioconvection is not wholly suppressed and perturbs the flow field.Comment: 19 pages, 9 figures, published version available at http://iopscience.iop.org/1478-3975/7/4/04600

    Acoustic characterization of Hofstadter butterfly with resonant scatterers

    Full text link
    We are interested in the experimental characterization of the Hofstadter butterfly by means of acoustical waves. The transmission of an acoustic pulse through an array of 60 variable and resonant scatterers periodically distribued along a waveguide is studied. An arbitrary scattering arrangement is realized by using the variable length of each resonator cavity. For a periodic modulation, the structures of forbidden bands of the transmission reproduce the Hofstadter butterfly. We compare experimental, analytical, and computational realizations of the Hofstadter butterfly and we show the influence of the resonances of the scatterers on the structure of the butterfly

    Hysteresis effect due to the exchange Coulomb interaction in short-period superlattices in tilted magnetic fields

    Full text link
    We calculate the ground-state of a two-dimensional electron gas in a short-period lateral potential in magnetic field, with the Coulomb electron-electron interaction included in the Hartree-Fock approximation. For a sufficiently short period the dominant Coulomb effects are determined by the exchange interaction. We find numerical solutions of the self-consistent equations that have hysteresis properties when the magnetic field is tilted and increased, such that the perpendicular component is always constant. This behavior is a result of the interplay of the exchange interaction with the energy dispersion and the spin splitting. We suggest that hysteresis effects of this type could be observable in magneto-transport and magnetization experiments on quantum-wire and quantum-dot superlattices.Comment: 3 pages, 3 figures, Revtex, to appear in Phys. Rev.

    Ultra-stable implanted 83Rb/83mKr electron sources for the energy scale monitoring in the KATRIN experiment

    Full text link
    The KATRIN experiment aims at the direct model-independent determination of the average electron neutrino mass via the measurement of the endpoint region of the tritium beta decay spectrum. The electron spectrometer of the MAC-E filter type is used, requiring very high stability of the electric filtering potential. This work proves the feasibility of implanted 83Rb/83mKr calibration electron sources which will be utilised in the additional monitor spectrometer sharing the high voltage with the main spectrometer of KATRIN. The source employs conversion electrons of 83mKr which is continuously generated by 83Rb. The K-32 conversion line (kinetic energy of 17.8 keV, natural line width of 2.7 eV) is shown to fulfill the KATRIN requirement of the relative energy stability of +/-1.6 ppm/month. The sources will serve as a standard tool for continuous monitoring of KATRIN's energy scale stability with sub-ppm precision. They may also be used in other applications where the precise conversion lines can be separated from the low energy spectrum caused by the electron inelastic scattering in the substrate.Comment: 30 pages, 10 figures, 1 table, minor revision of the preprint, accepted by JINST on 5.2.201

    Phase transitions in soft-committee machines

    Get PDF
    Equilibrium statistical physics is applied to layered neural networks with differentiable activation functions. A first analysis of off-line learning in soft-committee machines with a finite number (K) of hidden units learning a perfectly matching rule is performed. Our results are exact in the limit of high training temperatures. For K=2 we find a second order phase transition from unspecialized to specialized student configurations at a critical size P of the training set, whereas for K > 2 the transition is first order. Monte Carlo simulations indicate that our results are also valid for moderately low temperatures qualitatively. The limit K to infinity can be performed analytically, the transition occurs after presenting on the order of N K examples. However, an unspecialized metastable state persists up to P= O (N K^2).Comment: 8 pages, 4 figure

    A Laterally Modulated 2D Electron System in the Extreme Quantum Limit

    Full text link
    We report on magnetotransport of a two-dimensional electron system (2DES), located 32 nm below the surface, with a surface superlattice gate structure of periodicity 39 nm imposing a periodic modulation of its potential. For low Landau level fillings Μ\nu, the diagonal resistivity displays a rich pattern of fluctuations, even though the disorder dominates over the periodic modulation. Theoretical arguments based on the combined effects of the long-wavelength, strong disorder and the short-wavelength, weak periodic modulation present in the 2DES qualitatively explain the data.Comment: 4 pages, 5 figures. to appear in Phys. Rev. Let

    Light scattering from a periodically modulated two dimensional electron gas with partially filled Landau levels

    Get PDF
    We study light scattering from a periodically modulated two dimensional electron gas in a perpendicular magnetic field. If a subband is partially filled, the imaginary part of the dielectric function as a function of frequency contains additional discontinuities to the case of completely filled subbands. The positions of the discontinuities may be determined from the partial filling factor and the height of the discontinuity can be directly related to the modulation potential. The light scattering cross section contains a new peak which is absent for integer filling.Comment: RevTex, 4 figures. To appear in Phys. Rev. B as a brief repor
    • 

    corecore