39 research outputs found

    GSE4, a small dyskerin- and GSE24.2-related peptide, induces telomerase activity, cell proliferation and reduces DNA damage, oxidative stress and cell senescence in dyskerin mutant cells

    Get PDF
    Dyskeratosis congenita is an inherited disease caused by mutations in genes coding for telomeric components. It was previously reported that expression of a dyskerin-derived peptide, GSE24.2, increases telomerase activity, regulates gene expression and decreases DNA damage and oxidative stress in dyskeratosis congenita patient cells. The biological activity of short peptides derived from GSE24.2 was tested and one of them, GSE4, that probed to be active, was further characterized in this article. Expression of this eleven amino acids long peptide increased telomerase activity and reduced DNA damage, oxidative stress and cell senescence in dyskerin-mutated cells. GSE4 expression also activated c-myc and TERT promoters and increase of c-myc, TERT and TERC expression. The level of biological activity of GSE4 was similar to that obtained by GSE24.2 expression. Incorporation of a dyskerin nuclear localization signal to GSE24.2 did not change its activity on promoter regulation and DNA damage protection. However, incorporation of a signal that increases the rate of nucleolar localization impaired GSE24.2 activity. Incorporation of the dyskerin nuclear localization signal to GSE4 did not alter its biological activity. Mutation of the Aspartic Acid residue that is conserved in the pseudouridine synthase domain present in GSE4 did not impair its activity, except for the repression of c-myc promoter activity and the decrease of c-myc, TERT and TERC gene expression in dyskerin-mutated cells. These results indicated that GSE4 could be of great therapeutic interest for treatment of dyskeratosis congenita patients.This work was supported by grants PI1401495 (supported by FEDER funds) and ER15PR07ACC114/757 (Fondo de Investigaciones Sanitarias, Instituto de Salud Carlos III. Spain), 201320E075 (Consejo Superior de Investigaciones Científicas) and IPT-2012-0674- 090000 (Ministerio de Economía y Competitividad. Spain). CM-G is supported by the CIBER de Enfermedades Raras.Peer Reviewe

    Next-generation sequencing in bone marrow failure syndromes and isolated cytopenias: experience of the spanish network on bone marrow failure sundromes

    Get PDF
    © 2021 the Author(s).Inherited bone marrow failure syndromes (IBMFSs) are a group of congenital rare diseases characterized by bone marrow failure, congenital anomalies, high genetic heterogeneity, and predisposition to cancer. Appropriate treatment and cancer surveillance ideally depend on the identification of the mutated gene. A next-generation sequencing (NGS) panel of genes could be 1 initial genetic screening test to be carried out in a comprehensive study of IBMFSs, allowing molecular detection in affected patients. We designed 2 NGS panels of IBMFS genes: version 1 included 129 genes and version 2 involved 145 genes. The cohort included a total of 204 patients with suspected IBMFSs without molecular diagnosis. Capture-based targeted sequencing covered > 99% of the target regions of 145 genes, with more than 20 independent reads. No differences were seen between the 2 versions of the panel. The NGS tool allowed a total of 91 patients to be diagnosed, with an overall molecular diagnostic rate of 44%. Among the 167 patients with classified IBMFSs, 81 patients (48%) were diagnosed. Unclassified IBMFSs involved a total of 37 patients, of whom 9 patients (24%) were diagnosed. The preexisting diagnosis of 6 clinically classified patients (6%) was amended, implying a change of therapy for some of them. Our NGS IBMFS gene panel assay is a useful tool in the molecular diagnosis of IBMFSs and a reasonable option as the first tier genetic test in these disorders

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    CIBERER: Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    13 páginas,1 figura, 3 tablas, 1 apéndice. Se extraen los autores pertenecientes a The CIBERER network que trabajan en Centros del CSIC del Appendix ACIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research.This study has been funded by Instituto de Salud Carlos III (ISCIII) and Spanish Ministry of Science and InnovationPeer reviewe

    Polymorphism and structure of the gene coding for the a1 subunit of the Artemia franciscana Na/K-ATPase

    Get PDF
    10 pages, 7 figures, 1 table.Genomic clones coding for one of the two identified Artemia franciscana Na/K-ATPase alpha subunits, the alpha 1 subunit, have been isolated. Several overlapping clones were obtained, although their restriction maps showed a large heterogeneity. Sequencing of their exons showed that they differ in up to 3.46% of their nucleotides in translated regions and 8.18% in untranslated regions. Southern blot analysis of DNA purified from different lots of A. franciscana cysts and from isolated individuals suggests that the variation is due to the existence of multiple Na/K-ATPase alpha 1 subunit alleles in A. franciscana. The Na/K-ATPase alpha 1 subunit gene is divided into 15 exons. Ten of the 14 introns are located in identical positions in this gene as in the human Na/K-ATPase alpha 3 subunit gene. Analysis of the 5' flanking region of the gene has allowed identification of the transcription-initiation sites. The adjacent upstream region has been shown to have functional promoter activity in cultured mammalian cells, suggesting the evolutionary conservation of some of the promoter regulatory sequences.This work was supported by Grants PB92-0076 from the Dirección General de Investigación Científica y Técnica and 95/0882 from the Fondo de Investigaciones Sanitarias de la Seguridad Social.Peer reviewe

    β-catenin signaling is required for RAS-driven thyroid cancer through PI3K activation

    Get PDF
    Mutations in β-catenin are traditionally described as late events in thyroid cancer progression. However, the functional implications of β-catenin dysregulation in the context of tumor initiating events remain unclear. The aim of this work was to investigate whether the two main oncogenic drivers in thyroid cancer, RAS and BRAF, could activate the Wnt/β-catenin pathway. Expression of HRAS but not BRAF in thyroid cells induced β-catenin nuclear localization, increased β-catenin-dependent transcriptional activity and inhibited GSK3β. In a panel of human thyroid cancer cell lines representative of the main genetic events in thyroid cancer, β-catenin activation was highly dependent on PI3K/AKT activity through its phosphorylation at S552, but not on MAPK. Silencing of β-catenin expression in cell lines led to a dramatic reduction in proliferation due to an induction of senescence, which was concordant with a reduction in tumor size in nude mice. Moreover, β-catenin silencing suppressed the expression of EMT-related genes and reduced the invasive capacity of the tumor cells. In conclusion, this work demonstrates that RAS-driven tumors induce PI3K/ AKT-dependent β-catenin activation.This work was supported by grants SAF2013-44709-R from the Ministerio de Economía y Competitividad of Spain and Fondo Europeo de Desarrollo Regional (FEDER), RD12/0036/0030 from Instituto de Salud Carlos III (ISCIII), S2011/BMD-2328 from Comunidad de Madrid, and GCB14142311CRES from Fundación Española contra el Cancer (AECC). AS-P was supported by predoctoral FPU fellowship from the Ministerio de Economía y Competitividad and MA-Z has a research contract of AECC (GCB14142311CRES) .Peer Reviewe

    High resolution melting analysis for the identification of novel mutations in DKC1 and TERT genes in patients with dyskeratosis congenita

    No full text
    Dyskeratosis congenita (DC) is a rare inherited bone-marrow failure syndrome with high clinical heterogeneity. Cells derived from DC patients present short telomeres at early ages, as a result of mutations in genes encoding components of the telomerase complex (DKC1, TERC, TERT, NHP2 and NOP10), or the shelterin complex (TINF2). However, mutations have been identified only in around 50% of the cases, indicating that other genes could be involved in the development of this disease. Indeed, mutations in TCBA1 or chromosome segment C16orf57 have been described recently. We have used HRM technology to perform genetic analysis in the above mentioned genes, in Spanish patients showing both, some clinical features of DC and short telomeres. The mutations have been identified by PCR amplification of DC genes followed by high resolution melting (HRM) and direct DNA sequencing analysis. We have identified seven new families with DC, three with X-linked DC and four with autosomal dominant DC, in which we have found two novel mutations in DKC1 (p.His68Arg and p.Lys390del) and four novel mutations in TERT gene (p.Pro530Leu, p.Arg698Trp, p.Arg971His and p.Arg698Gln). The results show that the use of HRM analysis enables a rapid and inexpensive identification of mutations in dyskeratosis congenita associated genes.This work was supported by grants: 08/1485 and 11/00949 from FIS; Fundación Genoma, BFU-05-0138; and Fundación Ramón Areces.Peer Reviewe

    Checkpoint kinase 1 modulates sensitivity to chemotherapy in aneuploid cell lines

    No full text
    Trabajo presentado al 21th Meeting of the European Association for Cancer Research celebrado en Bruselas (Bélgica) del 25 de Junio al 30 de Junio de 2010.This work is supported by FIS PS09/1988 and PI081485.Peer reviewe
    corecore