43 research outputs found

    Fluctuations of water near extended hydrophobic and hydrophilic surfaces

    Full text link
    We use molecular dynamics simulations of the SPC-E model of liquid water to derive probability distributions for water density fluctuations in probe volumes of different shapes and sizes, both in the bulk as well as near hydrophobic and hydrophilic surfaces. To obtain our results, we introduce a biased sampling of coarse-grained densities, which in turn biases the actual solvent density. The technique is easily combined with molecular dynamics integration algorithms. Our principal result is that the probability for density fluctuations of water near a hydrophobic surface, with or without surface-water attractions, is akin to density fluctuations at the water-vapor interface. Specifically, the probability of density depletion near the surface is significantly larger than that in bulk. In contrast, we find that the statistics of water density fluctuations near a model hydrophilic surface are similar to that in the bulk

    Sitting at the edge: How biomolecules use hydrophobicity to tune their interactions and function

    Full text link
    Water near hydrophobic surfaces is like that at a liquid-vapor interface, where fluctuations in water density are substantially enhanced compared to that in bulk water. Here we use molecular simulations with specialized sampling techniques to show that water density fluctuations are similarly enhanced, even near hydrophobic surfaces of complex biomolecules, situating them at the edge of a dewetting transition. Consequently, water near these surfaces is sensitive to subtle changes in surface conformation, topology, and chemistry, any of which can tip the balance towards or away from the wet state, and thus significantly alter biomolecular interactions and function. Our work also resolves the long-standing puzzle of why some biological surfaces dewet and other seemingly similar surfaces do not.Comment: 12 pages, 4 figure

    Probing surface tension additivity on chemically heterogeneous surfaces by a molecular approach

    No full text
    Surface free energy of a chemically heterogeneous surface is often treated as an approximately additive quantity through the Cassie equation [Cassie ABD (1948) Discuss Faraday Soc 3:11–16]. However, deviations from additivity are common, and molecular interpretations are still lacking. We use molecular simulations to measure the microscopic analogue of contact angle, θc, of aqueous nanodrops on heterogeneous synthetic and natural surfaces as a function of surface composition. The synthetic surfaces are layers of graphene functionalized with prototypical nonpolar and polar head group: methyl, amino, and nitrile. We demonstrate positive as well as negative deviations from the linear additivity. We show the deviations reflect the uneven exposure of mixture components to the solvent and the linear relation is recovered if fractions of solvent-accessible surface are used as the measure of composition. As the spatial variations in polarity become of larger amplitude, the linear relation can no longer be obtained. Protein surfaces represent such natural patterned surfaces, also characterized by larger patches and roughness. Our calculations reveal strong deviations from linear additivity on a prototypical surface comprising surface fragments of melittin dimer. The deviations reflect the disproportionately strong influence of isolated polar patches, preferential wetting, and changes in the position of the liquid interface above hydrophobic patches. Because solvent-induced contribution to the free energy of surface association grows as cos θc, deviations of cos θc from the linear relation directly reflect nonadditive adhesive energies of biosurfaces

    Molecular Insights into the Homogeneous Melting of Methane Hydrates

    No full text
    Although the melting of gas hydrates tends to be heterogeneous in most cases, in principle, this process can also be homogeneous when surface melting is properly inhibited. In this work, we investigated the molecular mechanisms of the homogeneous melting of superheated methane hydrates by means of molecular dynamics simulations. The homogeneous melting processes were found to be stochastic with varied induction times. We observed the formation of structural defects within the hydrogen-bonded water lattices of hydrate crystals during the induction times. The methane molecules were found to be relatively more stable within the gas hydrate phases, which might be responsible for the high stability of the superheated metastable methane hydrates. Although the melting processes involve the collective motion of water and methane molecules, the current work suggests that the migration and aggregation of methane molecules are critical in initiating the homogeneous melting of gas hydrate crystals
    corecore