259 research outputs found

    City Size Distribution Analyses Based on the Concept of Entropy Competition

    Get PDF
    The present work pursues theoretical and empirical objectives.With regards to the former, it is demonstrated that the natural tendency to uniformity of both the probability distribution of a city to have a certain number of inhabitants and that of a person to reside in a town of a given number of citizens leads to a competition between their information entropies, which provides the power law distribution as the most probable one for city size. It is also shown that Zipf’s law reflects the significant control of the existence of interconnections between cities on the self-organization of their size.With regards to the empirical objectives, based on population data of European countries and Italian municipalities, the theoretical approach proposed is validated. At the Italian scale, city distribution is shown to be a power law for cities above 10,000 inhabitants. In the 20 Italian regions, the breakpoint in the distribution is generally lower. Finally, the geographical control on city distribution is discussed based on the results achieved in some regions

    Energy recovery from vinery waste: Dust explosion issues

    Get PDF
    The concern about global warming issues and their consequences is more relevant than ever, and the H2020 objectives promoted by the EU are oriented towards generating climate actions and sustainable development. The energy sector constitutes a difficult challenge as it plays a key role in the global warming impact. Its decarbonization is a crucial factor, and significant efforts are needed to find efficient alternatives to fossil fuels in heating/electricity generation. The biomass energy industry could have a contribution to make in the shift to renewable sources; the quest for a suitable material is basically focused on the energy amount that it stores, its availability, logistical considerations, and safety issues. This work deals with the characterization of a wine-waste dust sample, in terms of its chemical composition, fire behavior, and explosion violence. This material could be efficiently used in energy generation (via direct burning as pellets), but scarce information is present in terms of the fire and explosion hazards when it is pulverized. In the following, the material is analyzed through different techniques in order to clearly understand its ignition sensitivity and fire effects; accelerating aging treatment is also used to simulate the sample storage life and determine the ways in which this affects its flammability and likelihood of explosion

    Biomass from winery waste: Evaluation of dust explosion hazards

    Get PDF
    Food and drink supply chains have significant environmental impacts due to their use of resources, emissions, and waste production. An efficient method to reduce this impact is the valorisation of biomass waste through energy recovery by using it as a source of heat. The European energy system faces several fundamental challenges being currently the largest emitter of greenhouse gases due to its large dependence on fossil fuels (mostly natural gas). Therefore, the energy sector's decarbonization will play a central role in achieving a climateneutral economy in Europe. Identifying the suitable material for biofuel is basically focused on the amount of energy that the material stores, availability, and logistic considerations. Sawdust and wood chips have been extensively used as biofuel in recent years, but other promising raw and waste materials could be adopted (with the positive effect of reducing the impact on forestry soil and the food chain). Novel materials bring consequently novel challenges, also regarding their safe use. As an example, a relevant waste flow is produced from wine manufacturing. A solid with high moisture content is obtained from grapes pressing, and it could be reused to produce distillates. The obtained exhausted pomace could be considered among the materials potentially involved in energy recovery. It is also carrying dust explosion hazard, as solid residues could be present in the form of coarse and fine powders. In this work, grape pomace is examined: its explosion safety-related properties are evaluated to define the severity of events in which this material could be ignited. Minimum Ignition Energy (MIE), explosion pressure peak (Pmax), deflagration severity index (KSt), autoignition temperature (MIT), and Volatile Point (VP) are measured according to standard procedures. This material's thermal susceptibility and ignition sensitivity are studied and compared with biomasses from different sources (ligneo-cellulosic and herbaceous)

    Issues of “Standard” explosion tests for non-spherical dusts

    Get PDF
    Measurements of the flammability and explosion parameters for non-spherical dusts are performed according to standard procedures in standard explosion equipment developed and tested for spherical dusts. Studies have shown that the standard procedures and equipment applied to spherical particles suffer from many issues: control of the turbulence level, non-uniform dust dispersion, and particle fragmentation due to the injection system. The applicability of the standard procedures and equipment to non-spherical particles is still an open issue. In this work, we have investigated, via CFD simulations, the distribution of turbulence and dust concentration in the standard 20 l spherical vessel for non-spherical particles. Results have shown that a higher turbulence level and a higher amount of dust actually fed into the vessel are reached with respect to spherical particles

    Connections between Classical and Parametric Network Entropies

    Get PDF
    This paper explores relationships between classical and parametric measures of graph (or network) complexity. Classical measures are based on vertex decompositions induced by equivalence relations. Parametric measures, on the other hand, are constructed by using information functions to assign probabilities to the vertices. The inequalities established in this paper relating classical and parametric measures lay a foundation for systematic classification of entropy-based measures of graph complexity

    Genes as Tags: The Tax Implications of Widely Available Genetic Information

    Get PDF
    This paper examines how progress in genetics\u27 specifically, the proliferation of knowledge about the human genome\u27 may influence the feasibility and desirability of a tax that is based on individual human endowments or ability. The paper explores various forms that such a genetic endowment tax-and-transfer regime might take and identifies some of the benefits and costs of such a regime. The authors take no position on whether a genetic endowment tax would be desirable or not. However, one contribution of the paper is to observe that current law in the U.S., which restricts the use of genetic information by insurers and employers, is equivalent to a form of genetic endowment tax. The paper also notes that, in the absence of a government-mandated transfer policy with respect to genetic endowments, private insurance markets may arise to fill the gap, allowing individuals to purchase insurance against the possibility of a bad genetic draw
    • …
    corecore