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The present work pursues theoretical and empirical objectives. With regards to the former, it

is demonstrated that the natural tendency to uniformity of both the probability distribution

of a city to have a certain number of inhabitants and that of a person to reside in a town of a

given number of citizens leads to a competition between their information entropies, which

provides the power law distribution as the most probable one for city size. It is also shown

that Zipf’s law reflects the significant control of the existence of interconnections between

cities on the self-organization of their size.With regards to the empirical objectives, based on

population data of European countries and Italian municipalities, the theoretical approach

proposed is validated. At the Italian scale, city distribution is shown to be a power law for

cities above 10,000 inhabitants. In the 20 Italian regions, the breakpoint in the distribution

is generally lower. Finally, the geographical control on city distribution is discussed based

on the results achieved in some regions.

Introduction

Since Zipf (1949), many works have dealt with the analysis of the city size distribution of several
groups of cities worldwide, generally finding an agreement of a power law distribution with
observed data (e.g., Moura and Ribeiro 2006; Gligor and Gligor 2008; Giesen and Südekum 2011;
Rastvorstseva and Manaeva 2016). A good review of plus and minus points identified in analyzing
the so-called Zipf’s law is given in Arshad, Hu, and Ashraf (2018).

Nowadays, it is also known that power law distributions are common in complex systems
whose pattern is governed by the interactions between the constituent elements rather than
by their specific nature and this makes the study of these systems particularly inclined to a
mechanical-statistical analysis (Bogacz, Burda, and Wacław 2006; Dorogovtsev, Mendes, and
Samukhin 2003). Among these systems, geographical ones are included, for which a number of
studies have made use of entropy models (e.g., Wilson 1967; Batty 1974, 1976, 2010). Such an
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approach has not yet been sufficiently explored to analyze the city-size probability distribution,
which certainly depends on the complexity inherent in the self-organization process of a group
of cities, with particular reference to their size.

With regard to theoretical aspects, our article follows this furrow, as it exploits what was
proposed by Sanchirico and Fiorentino (2008), who invoked the principle of maximum entropy
(Jaynes 1957), which states that the least biased probability distribution of an unconstrained
variable is the uniform distribution. By applying this concept to a complex system made up of
many elements interacting between each other, they showed that the probability of an element
to interact with other elements comes out to be a power law because the natural tendency
to uniformity of this probability is contrasted by the tendency exhibited by the probability
distribution of the interactions themselves to be the most uniform with respect to a homogeneous
class, namely identified by the number of the connected elements. This contrast leads to a
competition between the information entropies (Shannon 1948) of these two distributions, which
provides the power law distribution as the most probable one for the number of interactions of a
single element of the system.

A first objective of this article is mainly theoretical, consisting in using a statistical mechanics
approach to derive the city size probability distribution, in order to show that this distribution
arises as the most probable one when connections between cities become significant for the
self-organization of a set of cities with regard to their dimensions. Still from a theoretical point
of view, besides the static behavior of the probability city-size distributions, a rationale on
how and why these distributions evolve in time is proposed in this study. This issue is here
treated by proposing a simple model for describing the evolution of the city-size distribution
for a given group of cities. By remaining in the framework of statistical mechanics, and using
a thermodynamic analogy which allows us to give energetic interpretation to the distribution
parameters, this model is used to discuss peculiar aspects shown by real-world city size
distributions at different scales.

In this research, an empirical analysis is also carried out to support and validate the
proposed theoretical developments, and to further speculate on their geographical and social
implications. As a first step, population data of the European nations were used to support
the crucial idea that the probability distribution of population sizes cannot be a power law
if the administrative entities considered are not strongly integrated institutionally (common
rules, common culture, common language, etc.) and economically (comparable needs, social
services, industrial vocation, etc.), and then those power laws can fit to city-size proba-
bility distributions but not to the nation populations ones. This is in agreement with what
stated by Cristelli, Batty, and Pietronero (2012), who observed that to achieve power laws
cities should be homogeneous, in the sense that they should be integrated institutionally and
economically.

Then, census population data of about 8,000 (7,914) Italian towns were used with the aim
of fitting and interpreting the city-size probability distribution. Analyses were developed on a
national basis as well as at a regional scale. For all groups of towns considered, a break point in
the power law distribution of city sizes was identified. Consequently, the power law regarding
the probability distribution for largest towns in each group was estimated. In this article, the
role played by the break point in dividing the sample of cities considered into two groups of
cities was particularly considered because it indicates, for instance, that these groups may not
be homogeneous for such characters as for instance job opportunities, education services, health
assistance, etc.
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To summarize, the main objectives of these empirical analyses were: (i) validating the
theoretical approach proposed to account for the emergence of a power law for the city-size
probability distributions, and more in general supporting all the theoretical parts of the article; (ii)
exploiting a thermodynamical analogy to interpret the power law parameters as crucial quantities,
suitable to discriminate between different groups with regard to their energetic content; (iii)
demonstrating that on a national basis the cities are better socially and economically integrated
if their dimension is above a given threshold, which for the Italian system is equal to 10,000
citizens; (iv) showing that smaller towns, which are excluded by this group, are anyway linked
to closer bigger towns on a regional basis, where a sufficiently large city behaves as a local
hub. Yet, even at the regional scale a breakpoint is recognized, indicating that in all regions
there are very small towns that are not integrated, neither at the national scale nor at the
regional one.

Finally, it may help remarking that the article contains some mathematical developments
that for the sake of lightness are reported in the Appendix. The reader more interested is referred
to the Appendix for the full comprehension of the theoretical approach proposed here.

Theory

The probability distributions for describing city sizes
A set of cities in a country can be thought of as a thermodynamic system, subject to the
energy exchange with the environment while the collection of interacting elements moves
toward an equilibrium configuration. In line with this idea, in this section, we develop a
statistical-mechanical formalism to derive the city size distribution.

In order to explain our method, let us start from considering a country with a total population
of N people that live in a system of A cities, and denote by n

i
the number of inhabitants of the ith

city. The probability that a person chosen at random lives in a particular city i is then given by

q
i
=
n
i

N

, (1)

with
N =

∑

i

n
i
, (2)

for index i ranging from 1 to A.
For our purposes, rather than referring to the distribution (1), it is worthwhile to group cities

by the number of inhabitants. Let a
n

be the number of cities with n citizens, the probability that
a randomly selected city has n inhabitants is then given by

p
n
=
a
n

A

, (3)

with

A =
n
M∑

n=n0

a
n
, (4)

where n0 and n
M

denote the less populous town and the city with the largest number of inhabitants,
respectively. In this article, for the sake of simplicity, the sum in (4) is understood in the limit
for large n, while n0 is assumed to be equal to 1, and the role played by this parameter will be
specifically discussed later.
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In addition, the product na
n

gives the total number of people that live in the cities with n
residents, so that the frequency

r
n
=
na

n

N

, (5)

gives the probability that a person chosen at random lives in a city of n inhabitants. Note that the
total number of citizens living in the whole system is also given by N =

∑
n
na

n
, where the sum

is performed over classes of population n, whereas in equation (2) the constant N is summed
over the set of all individual cities. By consequence, compared to the primary distribution (1),
the r

n
probability stems from an aggregation of people over a number of homogeneous cities

with respect to population, once defined the probability p
n

that supplies the frequency of cities
with the same population n. However, as we will see in a moment, the information amount of the
detailed distribution (1) is the same as the one contained into the aggregate distributions p

n
and

r
n
. Finally, note that combining equations (3) and (5) provides

r
n
=
np

n

⟨n⟩ , (6)

where
⟨n⟩ =

∑

n

np
n
= N

A

, (7)

denotes the average city size.
Following the information theory, the constituents of a system of cities stand for the particles

of an equilibrium thermodynamic system, whose entropy acts as a measure of the average
uncertainty encoded by the probability distribution of the elements. The Shannon entropy
(Shannon 1948) may thus be defined for both p

n
and r

n
distributions as follows:

S
p
= −

∑

n

p
n

ln p
n
, (8)

and
S
r
= −

∑

n

r
n

ln r
n
. (9)

The entropies S
p

and S
r

quantify the randomness of the probability distributions p
n

and r
n

with
respect to which a city in the first case and an inhabitant in the latter belong to the population
class n.

It is worth noticing that either entropy function (8) or (9) is enclosed into the Shannon
entropy

S
q
= −

∑

i

q
i
ln q

i
, (10)

defined for the distribution (1). This entropy measures the randomness degree about the location
of an inhabitant within the system of cities, according to the knowledge of the special city
which an inhabitant lives in. As explained in Appendix A.1, up to an additive constant, it is
straightforward to prove that

S
q
= −

∑

n

r
n

ln
r
n

p
n

, (11)

which makes clear as to what is stated about the role played by the p
n

and r
n

distributions in
describing the population spreading over a set of cities. Equation (11) indeed states the average
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information at a finer scale, related to the q
i

distribution, can entirely be deduced by the coupled
distributions p

n
and r

n
, provided the r

n
distribution be conditioned to the knowledge of the city

weights p
n
.

The Lagrange multiplier method to derive the city size distribution
Now let us pass to explain the emergence of a power law in general and Zipf’s law in particular
as a consequence of an equilibrium state. To do this, we need to review a few aspects of the
interplay between statistical mechanics and information theory, which is at the heart of the Jaynes
principle of maximum entropy (Jaynes 1957). Exactly as the particles of a thermodynamic system
reach the most probable configuration at the equilibrium state, the least biased distribution of a
random variable is the one that maximizes the Shannon entropy, subject to a set of constraints
expressed as ensemble averages. Under conditions imposed by both the system structure and
the energy exchange with the environment, the maximum entropy distribution is thus the most
random, where random is to be meant as uniform (see Appendix A.2).

Following the theoretical framework originally developed by Sanchirico and
Fiorentino (2008), and in order to adapt the approach to a geographical setting, let us
assume for the moment that the set of cities, which we denote by G

A
, be an isolated

thermodynamical system. This means that no conditions except the normalization one affect
the tendency towards the most probable state of the city size distribution. As explained in
Appendix A.2, the unconstrained maximum entropy principle leads to the uniform distribution
p
n
= 1∕Ω, which implies that each of the Ω clusters of G

A
has the same number of elements.

The city size distribution is thus the most random. An isolated system of cities indeed would
organize itself irrespectively of the relation structure of the inhabitants that compose it, which
therefore plays no role in arranging cities into clusters of G

A
. Similarly, considering the set

of citizens, which we note G
N

, as isolated from the rest of the universe, the most probable
distribution of the citizens by population classes is the uniform distribution r

n
= 1∕Ω. Thus,

without any a priori bias about the number of cities that aggregate them, citizens would tend to
fall inside available classes as randomly as possible. Under conditions of maximum randomness,
cities and citizens then would tend to satisfy the uniform distributions p

n
= 1∕Ω and r

n
= 1∕Ω,

respectively, but this is not consistent with observations of real country distributions. This is
because the statistical distributions of the cities and the citizens are related to each other by
means of equation (6), which expresses the fact the two sets are not isolated. By consequence,
any attempt by the elements of G

A
to assume the configuration that satisfies the uniform

distribution of the cities will unbalance the elements of G
N

, whose corresponding distribution
will move away from the uniform one, and vice versa. To be more precise, the particular city size
distribution p

n
= 1∕nΛ2, which unbalances the unbiased distribution p

n
= 1∕Ω with Λ2 being

a normalization constant, corresponds to the uniform probability r
n
= 1∕Ω via equation (6).

From a geographical perspective, the uniform distribution p
n
= 1∕Ω comes from the fact that

the set of cities is assumed to be impermeable to any energy exchanges from the surroundings,
included the ones produced by the actions of the constituents of G

A
itself. On the contrary, the

enormous and diversified number of socioeconomic relations among citizens actually immerge
the set G

A
in a heat bath, wherein the people interactions play the role of an energy exchange

with the environment. It is thus clear that, while driving its own distribution by size classes, the
inhabitants affect the city size distribution too. By consequence, we may suppose the coupled
sets G

A
and G

N
will both tend to an intermediate equilibrium state at which the attempt to get

uniform the respective distributions p
n

and r
n

mutually balance. In this way, in the absence of
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other additional constraints, the competition that emerges between the sets of cities and citizens
represents the least biased information by which the statistical state of the system is described.
This phenomenon, which we will refer to as the entropy competition, can be taken into account
by imposing the condition of maximum randomness of the elements of G

N
, as a constraint for

maximizing the entropy (8) associated to the set G
A
.

As discussed in Appendix A.3, the problem is solved by searching for the maximum of S
p

with respect to the following constraints:
∑

n

p
n
= 1 and

∑

n

p
n

ln n = ⟨ln n⟩
p
, (12)

with the latter expressing the entropy competition outlined above, so that the following pair of
power-laws is achieved:

p
n
= n

−𝛾

𝜁 (𝛾)
and r

n
= n

1−𝛾

𝜁 (𝛾 − 1)
, (13)

where 𝜁 (𝛾) =
∑∞

n=1 n
−𝛾 is the Riemann zeta function that converges for 𝛾 > 1.

Yet, when analyzing real-world data, one can observe that few city size distributions follow
a power law over the entire range of population values. On the contrary, below a threshold
value, say n0 much greater than 1, the city size distributions often deviate from the power-law
regime. Thus, when plotting data on a logarithmic scale the straight-line confirms itself only
for population values greater than n0. It follows that the right-hand tails of the probability
distributions fitting the real-world population values are given by

p
n
= n

−𝛾

𝜁

(
𝛾, n0

) and r
n
= n

1−𝛾

𝜁

(
𝛾 − 1, n0

) , (14)

where the normalization factor 𝜁
(
𝛾, n0

)
=
∑∞

n=n0
n
−𝛾 is the incomplete zeta function (New-

man 2005). In the next section we will discuss the geographical implications due to the threshold
value n0.

Before closing this section, it is useful to discuss some technical details. In the section
devoted to the empirical analysis, in order to validate our model, rather than plotting a histogram
of the city population by binning values we will make a plot of the exceedance probability P

n
,

also known as the complementary cumulative distribution, which gives the probability of finding
a city with population greater than n. The exceedance probability can easily be computed through
continuous approximation, by assuming that n is a real variable, which allows us to deal with
integrals in place of the harder special functions needed for the discrete case. The normalization
factors in the denominators of equations (14) then can be rewritten as:

Z
p
=

n
1−𝛾
0

𝛾 − 1
and Z

r
=

n
2−𝛾
0

𝛾 − 2
, (15)

from which we achieve the following probability density functions

p
n
= 𝛾 − 1

n0

(
n

n0

)−𝛾
and r

n
= 𝛾 − 2

n0

(
n

n0

)1−𝛾
, (16)

which replace the discrete distributions (14), respectively. A probability density function of such
a type is also known as the Pareto distribution. Anyway, the city size distributions given by
the first of equations (13), (14), and (16) differ only for the normalization conditions, while
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a power-law is obeyed in all three long-tails with the same scaling exponent 𝛾 . Finally, by
definition of exceedance probability, we get:

P
n
=
(
n

n0

)1−𝛾
∼ n

1−𝛾 and R
n
=
(
n

n0

)2−𝛾
∼ n

2−𝛾
, (17)

where R
n

gives the probability that a citizen chosen at random lives in a town of size greater
n. In equations (17) we also made explicit the asymptotic power-law tails of the cumulative
distributions for n > n0. Finally, it is worth emphasizing that the exceedance probability P

n

is actually Zipf’s law, except the coordinate axes are flipped. More precisely, the power-law
exponent of the city size distribution is related to Zipf’s exponent by the relation 𝛾 = 1 + 1∕z,
from which one deduces that 𝛾 is equal to 2 for a perfect Zipf law (z = 1).

A rationale for analyzing evolution of the city size distribution
In this section, we introduce a two-stage model which aids identification of conditions about the
population dynamics under which one can expect the entropy competition to emerge as a driving
phenomenon for the system of cities.

In the previous subsection we introduced the distribution (1) giving the probability that a
person chosen at random lives in a particular city i. Let us now denote byΠ

i
the probability that a

person in a country decides to go and live in a city i. This latter probability, which is in principle
different from (1), could simulate the internal migration at a national scale, when the person is
randomly selected from a fixed set of citizens, or could mimic the demographic growth when a
new citizen is injected into the system of cities. In general, Π

i
will depend on a large number

of variables characterizing the attractiveness of city i. We make here the first-order hypothesis
that at a complexity stage the probability Π

i
be proportional to the number of inhabitants of the

city i, which is taken as a surrogate for the attractive strength of the city. It is indeed reasonable
to assume that the more the size of a town, the more is the net of socioeconomic relationships
that their inhabitants or business companies establish with the other cities, so as to attract more
and more people from all over. It follows that there is a higher probability that a person goes to
live in a city that already has a large number of inhabitants. Under the above assumption, the
probability Π

i
is just equal to the distribution q

i
defined by (1). It is worth noticing that, from a

geographical viewpoint, this hypothesis implies that citizens are associated to cities at a national
scale, since people select the town in which spending their life by size, independently of how far
is the city they choose from that of birth. Here we make clear the relevance of the probability
Π
i

to the entropy competition outlined above. To do this, let us deal with the population classes
rather than individual cities. Then, the probability Π

n
that a person chooses to live in any of the

n-size cities is equal to the r
n

distribution given by equation (5). We can simply refer to the
aggregated probability Π

n
rather than the detailed Π

i
, since, by our hypothesis, it does not matter

which particular city of n inhabitants a person chooses as all cities of n size are indistinguishable
from one another as regards attractiveness.

Now let us focus our attention on the precomplexity phase. At an ancient stage of the
system evolution, due to a number of features that can be traced back to a strong cultural
inhomogeneity and high economic differences between geographical areas where cities develop,
we can hypothesize that the weak interactions between inhabitants of different regions cannot
exert any control on the system organization. Before complexity emerges, the probability that
a person chooses to live in a given town thus depends on local factors only, which can be
traced back to a native attracting force rather than to the city sizes. This means that citizens are
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associated to cities at a local scale, and people predominantly stay in the town where they were
born. Since no one chooses his city of birth, the probability that a person ends up to live in a city
i can be assumed to be uniformly distributed at random, according to the frequency Π

i
= 1∕A,

which also maximizes the entropy (10) without any constraints except the normalization one.
Note that this uniform distribution implies that each city has the same number of inhabitants,
that is, n

i
= N∕A = ⟨n⟩, for all i from 1 to A, where ⟨n⟩ is the mean value of the distribution p

n
,

according to equation (7). Moving from cities to population classes again, we see immediately
that the aggregated distribution Π

n
, corresponding to Π

i
= 1∕A, is given by Kronecker’s delta

Π
n
= r

n
= 𝛿

n⟨n⟩. (18)

This is a delayed discrete unit impulse that is zero everywhere except at n = ⟨n⟩, where it
assumes a value of 1. There exists indeed a sole population class given by the average city
size at which all the system population is concentrated. Two important consequences can be
drawn from this result. The first consideration is that the distribution (18) is not useful for any
statistical inference, since it represents the probability of an event that occurs with certainty (the
probability of having the population class ⟨k⟩ is 1). Therefore, the average information is null,
that is, S

r
= 0 for r

n
= 𝛿

n⟨n⟩. It follows no entropy competition arises at this phase as no inference
problem can be set for the unit impulse distribution. Secondly, a characteristic population scale
emerges, which gives the only city size value that has a nonzero probability of occurrence. By
consequence, the mean city size ⟨k⟩ naturally appears as the only average condition driving the
system organization in the precomplexity phase, which is thus controlled by only two parameters:
the number of cities and citizens. The average size of the cities then represents the only constraint
reflecting the uniform distribution Π

i
= 1∕A under which to search for the maximum value of

entropy S
p
. As shown in Appendix A.2, the least biased distribution achieved by maximizing

the entropy (8) subject to the constraint (7), as well as the normalization one, is the Boltzmann
exponential one:

p
n
= e

−𝛽n
∑

n
e
−𝛽n , (19)

where the normalization factor at denominator converges for 𝛽 > 0. By assuming that n be a
continuous variable so as to exchange the summation sign by an integral, the normalization factor
rewrites as

Z(𝛽) =
∞∑

n=1

e
−𝛽n ∼ ∫

∞

0
e
−𝛽n

dn = 1
𝛽

. (20)

It follows that the probability density function corresponding to the discrete one is given by
p
n
= 𝛽e−𝛽n, from which the exceedance probability is

P
n
= e

−𝛽n
. (21)

The thermodynamic analogy
Now, a couple of questions may arise: what does all this mean from an energetic viewpoint?
And how the energies controlling the system before complexity emerges are transformed during
the evolution process? In order to accommodate these issues, let us inspect the power-laws of
equations (13) in the light of a thermodynamic analogy. The method outlined in the previous
section leads indeed to a thermodynamic description of the system of cities that allows us to
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give an energy meaning to the constraints we used for the entropy maximization. Since this is a
crucial point for a physically founded interpretation of our approach, we have reserved for this
subject the Appendix A, which the reader is deferred to for a more comprehensive analysis. Here,
it suffices to recall that for an equilibrium system at a temperature T

p
= 1∕𝛾 , the distribution of

energies over all accessible levels is described by the partition function, which for a complex
system of cities is given by the normalization constant for the power-law city size distribution:

Z
p
= 𝜁 (𝛾) =

∞∑

n=1

n
−𝛾 = 1

𝛾 − 1
, (22)

where the sum over population n is understood to be a sum over all the energy states the cities
can assume, while the last equality holds in the limit for continuous approximation. Note that
using the normalization factor at denominator of the first of (13) is the same as setting n0 = 1
in the first of (15). The role exerted by the threshold parameter will be discussed later. From
the knowledge of the partition function, all other thermodynamic variables can be derived. In
particular, in Appendix A.3, it is shown that the partition function plays the role of generating
function for the internal energy E

p
, according to:

E
p
= −

𝜕 lnZ
p

𝜕𝛾

= ⟨ln n⟩
p
= 1
𝛾 − 1

, (23)

where the last equality descends from the continuous expression for Z
p

given by (22). Importantly,
equation (23) states that the logarithmic mean of the population, that is, the second constraint
of equations (12), acts as the internal energy of the system of cities. Analogously, with regard
to r

n
, the partition function for a system of citizens in a thermal equilibrium at a temperature

T
r
= 1∕(𝛾 − 1) is given by the normalization factor:

Z
r
= 𝜁 (𝛾 − 1) =

∞∑

n=1

n
1−𝛾 = 1

𝛾 − 2
, (24)

in agreement with the second of (13), while the last equality is to be meant to hold in the limit
for the continuous approximation, again. As above, the internal energy of the system of citizens
is then defined by

E
r
= −

𝜕 lnZ
r

𝜕𝛾

= ⟨ln n⟩
r
= 1
𝛾 − 2

, (25)

where subscript refers to the fact the logarithmic mean is calculated on the basis of the r
n

distribution. Moreover, the Helmholtz free energies for a complex system of cities and citizens
can be defined up to the Boltzmann constant as:

F
p
= −T

p
lnZ

p
= 1
𝛾

ln(𝛾 − 1) and F
r
= −T

r
lnZ

r
= 1
𝛾 − 1

ln(𝛾 − 2), (26)

where we made use of equations (22) and (24), as well as the definitions for temperatures T
p

and T
r
.

On the other hand, as explained in Appendix A.2, for a precomplex system of cities in a
thermal equilibrium at a temperature T = 1∕𝛽, the role of internal energy E is played by the
average population ⟨n⟩ according to

E = −𝜕 lnZ(𝛽)
𝜕𝛽

= ⟨n⟩ = 1
𝛽

, (27)
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Figure 1. (a) Internal energy associated to a power-law distribution with scale parameter 𝛾; solid
line: E

r
− E

p
, where E

p
and E

r
are given by equations (23) and (25), respectively; dashed line:

E
p
+ E

r
; dotted line: Internal energy associated to the exponential distribution (equation 27),

where parameter 𝛽 is estimated by means of the relation (30). (b) Free energy as a function of the
scale parameter 𝛾; solid line: Free energy F

p
associated to the power-law distribution p

n
(first of

equation 26); dashed line: Free energy F
r

associated to the power-law distribution r
n

(second of
equation 26); dotted line: Free energy associated to the precomplexity exponential distribution,
according to equation (28), where 𝛽 is given by equation (30).

where the mean is performed with respect to the exponential distribution (19), while the last
equality comes from using (20). Finally, the free energy is given as a function of parameter 𝛽 as
follows:

F = −T lnZ(𝛽) = 1
𝛽

ln 𝛽. (28)

The dependence of the internal and free energies on the scaling exponent 𝛾 is shown in Fig. 1,
where parameter 𝛽 has been estimated by assuming the same average population value for both
the exponential distribution (19) and the power-law city size distribution (first of (13)), this latter
being given by

⟨n⟩
p
= 𝛾 − 1
𝛾 − 2

. (29)

By comparing equations (27) and (29), one deduces that

𝛽 = 𝛾 − 2
𝛾 − 1

. (30)

These figures suggest the following comments. Firstly, as the condition that ensures the process
be exergonic with a flow of energy from the system to the surroundings is that free energy
decreases, Fig. 1b shows that in the range of values of 𝛾 observed for real systems (𝛾 < 4)
evolution occurs by changing this parameter from higher to smaller. Also, this flow direction
is clarified in Fig. 1a, which demonstrates that the internal energies for both p

n
and r

n
come

from the initial energy of the system, being E
p
+ E

r
less than ⟨n⟩, which represents the only

internal energy of the system before complexity emerges. In addition, Fig. 1a shows that once
the average information related to the distribution r

n
becomes significant, the internal energy

previously owned by the no-complex system is divided between both the ensembles of cities
and citizens; in particular, one can see that until 𝛾 is greater than 3 the internal energy is more
or less equally shared between p

n
and r

n
, since E

r
− E

p
∼ 0. Furthermore, in the same range,

evolution does not require a high increase of total energy. On the contrary, while 𝛾 approaches
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2, E
r

becomes greater and greater than E
p

and, in the limit for 𝛾 → 2, E
r

diverges, whereas E
p

attests itself to a finite value, according to equations (23) and (25). Therefore, for lower values
of 𝛾 , much more energy is needed by the system to move toward 𝛾 = 2 or, in other words, a
great amount of new population is necessary, which is acquired as internal energy by r

n
. This

means that in this range the city-size distribution is strongly controlled by the probability r
n

and
the residual local attractiveness progressively loses its strength as new energy is available. Thus,
it is suggested that Zip’s law (𝛾 = 2) represents the dominance of the system of cities as a whole
on local features, which in our schematization may occur when the internal energy of the system
of citizens diverges.

Also, it is noteworthy that all curves in Fig. 1a show a knee-shaped behavior for 𝛾 below
3, so that the system of cities may easily reduce 𝛾 to 2.5 but faces much more difficulties to
go below this value. In other words, local attractiveness, although weak in the competition with
the system power, is unlikely to completely disappear. One more consideration is reserved for
the behavior of free energy, which shows differences between the three distributions taken into
account here. As shown in Fig. 1b, F

p
is always positive for 𝛾 > 2, whereas the free energy

is negative for the exponential distribution, thus pointing out that in each town the population
may exert work on the surrounding system, while this is obviously false when the ensemble of
cities does not constitute a system because there is no relation between its elements. Also, it is
interesting to note that F

p
tends to zero when 𝛾 approaches 2.

In conclusion of this section let us briefly comment on the role played by the threshold
population value n0 that appears in equations (14). As discussed in the previous section, this
is indeed the lowest population value at which the power law is obeyed. As we will prove
in our empirical analysis, when inspecting the entire ensemble of cities one may note that the
exceedance probability of the size n tends indeed to vary very slowly below a threshold n0,
which is thus identified as a cutoff point in the city size distribution. An interpretation of n0 can
be suggested by the evolution model proposed here, by pointing out that this value represents the
minimum city size taken into account by people to choose the city for living by moving from other
towns. Yet, p

n
becomes a power law when the average information about the citizen distribution

by population classes prevails on the mean city size and this occurs when mobility between
towns becomes a significant practice. Under this assumption, the tendency to the uniformity of
r
n

represents indeed a constraint for p
n

to evolve far from the exponential distribution. Below
n0, the town population amount is controlled by local factors only. In addition, this cutoff value
is expected to decrease during the evolution process. In fact, in the beginning, just a few very
large cities become attractive beyond their surroundings, so that the population classes related
to the citizen set G

N
deal with large values of n only, and n = n0 is sufficiently high too. At

this stage, cities with population lower than n0 do not participate to mix people between towns,
unless suffering the emigration process activated by the increasing attractiveness of largest
cities. Afterwards and progressively, more towns of less high size start to attract new inhabitants
themselves, and n = n0 decreases.

Empirical analysis and discussion

In this section data analysis to support and validate the theoretical developments outlined above
and to shed more light on their geographical and social implications is carried out, with particular
regard to the way a system of cities tends to organize itself. Trying to respect a logical track, the
results are presented in the following order.
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First, the hypothesis that the city-size probability distribution in the initial state – in which
the ensemble of cities does not represent an interconnected complex system – can confidently
be assumed as an exponential distribution is assessed. Then, paying more attention to the core
of the article, which is mainly focused on the city size distributions nowadays observed, the
analysis is aimed to: (i) demonstrating how good is the conflict of entropy model to interpret
these distributions; (ii) to discuss the presence of a cut-off value in these distributions and its
meaning, even in the light of the proposed evolution model; (iii) showing that on a national
basis, the cities are better socially and economically integrated if their dimension is above a
given threshold; iv. demonstrating that, even if at the regional scale a breakpoint is recognized
also, smaller towns are anyway linked to closer bigger towns, where a sufficiently large city
behaves as a local hub. As regards the first issue, since it deals with a very ancient state of the
city size distribution, there is no way to confirm our hypothesis on a rigorous experimental basis.
However, we may assume that a system of countries, which have evolved with negligible mutual
interchange according to very different constraints (culture, language, etc.), may represent a
useful analog of a group of cities at the pre-complexity stage. More precisely, for our purposes,
we may state that there is similarity between the shape of a current country-size (population)
distribution and a precomplexity-stage city-size probability distribution.

To this aim, we analyzed population data of 45 European countries as given for the year
2019 by Eurostat in the open data section Population change - Demographic balance and crude
rates at national level (online data code: DEMO_GIND). These data were ordered to estimate
their exceedance probabilities shown in Fig. 2, where a data fit by the exponential probability
law of equation (21) is also provided (Fig. 2a).

It is worth noticing that the right-hand tail, which refers to larger countries where sociocultural
features are more different from each other, and then are those more similar to cities at a
precomplexity stage, shows a good agreement between data and our theoretical law (equation 21).
Thus, even acknowledging the limits of the assumed analogy, the hypothesis that the exponential
distribution can confidently be assumed to represent the initial city-size probability distribution is
(indirectly) empirically supported. To further point out this statement and to enforce the validity
of the hypothesis underlying the evolution model we proposed, in Fig. 2b it is shown how a
power law is absolutely inadequate to fit the right tail of the analyzed empirical distribution, so
confirming that the Pareto-type distributions are not suitable for not complex systems.

Figure 2. (a) Europe zone: Exceedance probability of country size (population amount) in a
semi-log plot. Observed data (dots) drown according to Hazen plotting position, and fitted
exponential probabilistic function (solid line) of equation (21); (b) log–log plot of the same data
fitted by a power law.
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Table 1. Italy: Administrative Units and Some Geographic Features

Population

Regions
Number of
provinces

Number of
municipalities Total Min Max

Surface
(km2)

% Mountain
area

1 Piemonte 8 1,181 4,328,565 32 857,910 25,387 43.3
2 Valle d’Aosta 1 74 125,653 85 33,916 3,261 100.0
3 Liguria 4 234 1,532,80 61 565,752 5,416 65.1
4 Lombardia 12 1507 10,010,833 30 1,406,242 23,864 40.4
5 Trentino-A.A. 2 291 1,074,034 141 120,641 13,606 100.0
6 Veneto 7 563 4,884,590 127 259,087 18,407 29.0
7 Friuli-V. Giulia 4 215 1,210,414 102 201,613 7,862 42.6
8 Emilia-Romagna 9 328 4,459,453 69 395,416 22,453 25.3
9 Toscana 10 273 3,701,343 391 366,927 22,987 25.1
10 Umbria 2 92 873,744 94 164,880 8,464 29.3
11 Marche 5 228 1,520,321 111 99,077 9,401 31.0
12 Lazio 5 378 5,773,076 69 2,808,293 17,232 26.1
13 Abruzzo 4 305 1,300,645 82 119,862 10,832 65.1
14 Molise 2 136 303,790 104 48,337 4,461 55.3
15 Campania 5 550 5,740,291 224 948,850 13,671 34.6
16 Puglia 6 257 3,975,528 163 315,284 19,541 1.5
17 Basilicata 2 131 558,587 229 66,393 10,073 46.9
18 Calabria 5 404 1,912,021 211 174,885 15,222 41.9
19 Sicilia 9 390 4,908,548 187 647,422 25,832 24.5
20 Sardegna 8 377 1,622,257 77 151,005 24,100 13.6

To deal with the other objectives of the empirical analysis, let us pass to consider city’s
population data. In such a case, we used Italian population values of the 7,914 municipalities
as certified by the Italian Institute of Statistics (ISTAT) at the end of the year 2019. The data
vary from a very small town of 30 residents in the case of Monterone (province of Lecco, in
the North), to the maximum value of millions of citizens, equal to 2,808,293 residents in the
case of Rome, the largest municipality. The average population size is 7,536 with a standard
deviation of 42.40, while the total population is 59,816,673 and the covered area is 302,073 km2

(ISTAT 2019). To explore the relationships between the sets of citizens and their subgroups,
the municipalities were grouped into 20 regions and 110 provinces, namely the higher-level
administrative units, as shown in Table 1, where some territorial peculiarities are reported too.
In order to better interpret the results that we are about to show, it may be useful to premise
some general features of the Italian territory. In Italy, as well as elsewhere, there are several
elements that make the city a material and symbolic space of social relations and it is difficult
to give it a univocal definition in terms of size, heterogeneity and form. However, for the sake
of simplicity, the urban area is here considered to be that part of the territory falling within the
municipal administrative limits, although one should acknowledge that, in such a manner, we
are neglecting that the post-industrial cities grown in the last 50–60 years are rapidly changing
in their administrative form, morphology and social structure (Arbia 2001). The phenomenon of
urbanization outlined with the centralization of the population and the simultaneous depopulation
of the countryside and small villages has generated intense short-, medium-, and long-range
migratory flows that are movements toward the larger provinces, from the south toward the
north of Italy and also toward other countries. Furthermore, the Italian territory, as a physical
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Figure 3. Italy: (a) map of territorial units (the numbers are referred to regions as in Table 1,
bigger dots indicate provinces, smaller dots indicate municipalities); (b) elevation map.

place where social relations and production are woven, conditioning the quality of life and the
economy, is characterized by very pronounced differences between the North and the South,
between cities and the countryside and between lowlands and mountain areas, which largely
overlap with inland areas. Today, as in the past, the position of territories and the resources
available to them determine their development opportunities. Thus, a morphological description
of the country enables us to identify the geographic criticalities that can contribute to hinder
the socioeconomic development of a system of cities. The spatial pattern of all Italian territorial
units is shown in Fig. 3a, while Fig. 3b shows the elevation map, which somehow reveals its
impact on the evolution of the system of cities. The database described allowed us to verify the
theoretical model and carry out the application reported below. In Fig. 4a, the log–log plot of
observed exceedance frequencies of city size values for all Italian towns is shown with regard to
the complementary cumulative probability distributions P

n
and R

n
. In the first case, frequencies

were estimated by the Hazen plotting position (Hazen 1914) after simply ordering the population
sizes of all censed municipalities, while in the latter the estimates of R

n
were achieved for

each city by summing the inhabitants of all the cities larger than the one in question, and by
making the ratio of this sum to the total number of inhabitants in Italy. It is evident that the
right-hand tails follow a power law in both cases for n greater than a threshold value that for
the sake of simplicity can be assumed equal to 10,000. This behavior fully supports all the
hypotheses we assumed in this work, with particular regard to the emergence of the entropy
competition phenomenon described in the previous sections. This is well shown in Fig. 4b,
where it is demonstrated that the power law provides a very good fit for both P

n
and R

n
, and

that the difference between the estimated exponents of these laws is close to 1, as theoretically
expected by invoking equations (17). With more specific regard to geographical aspects, these
results indicate that people living in towns with a size greater than 10,000 belong to a statistically
homogeneous group, where they may happen to live in a town rather than another according to
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Figure 4. Exceedance probability of city size in Italy (year 2019 census). P
n

( ) is the probability
of a town to have a size greater than n, R

n
( ) is the probability of a citizen to live in a town of a

size greater than n. The symbols show the observed frequencies, while the dashed lines indicate
the estimated probabilities: (a) all municipalities in Italy; (b) municipalities with more 10,000
residents.

Figure 5. Italy. (a) Map of cities with more than 10,000 inhabitants; (b) map of cities with less
than 1,000 inhabitants; (c) Italian mobility connection map referred to January 2020, third week.

the number of accidents and opportunities, but in situations that would not significantly change
whether living in any other town within the group. This shows that these cities belong to the
same complex system and take on similar social, economic, and relational behaviors. On the
contrary, the towns with population smaller than 10,000, appear to be less connected to others
and condemned to suffer for the lack of services accessible to people living in larger cities only.
The maps shown in Fig. 5 offer an interesting sketch of how these two groups of towns are
scattered within Italy. In particular, Fig. 5a shows that the cities with more than 10,000 residents
are organized by a number of larger cities acting as hubs for groups of towns around them. It
is evident that cities come in clusters where some bigger towns tend to aggregate some other
smaller ones around them. As well as one can easily see that the system of cities self-developed
following some preferential directions, which practically avoided mountainous areas (Alps and
Apennines). It is also interesting to notice that conversely the smallest towns are mainly located
inland and in mountain areas, constituting a system that tend to be geographically separated
from the other (Fig. 5b). Comparison of Fig. 5a–c, whose similarity is evident, demonstrates
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Table 2. City Size Distribution for Italian Regions: From left: Parameter Estimates (n0 and 𝛾)
for the Power Law Fitted to Municipality Population Census Data for the Year 2019; Coefficient
of Determination Achieved for n > n0; ξ: Percentage of Population Living in Towns with n > n0;
ν: Percentage of Towns with n > n0

Region n0 γ R
2 ξ ν

Abruzzo 2,500 2.12 0.971 84% 30%
Basilicata 2,500 2.38 0.977 84% 44%
Calabria 2,500 2.30 0.988 84% 42%
Campania 6,000 2.25 0.951 86% 34%
Emilia-Romagna 5,000 2.22 0.983 92% 59%
Friuli-Venezia Giulia 3,500 2.37 0.975 83% 36%
Lazio 2,000 1.96 0.944 97% 57%
Liguria 2,000 2.02 0.984 93% 42%
Lombardia 5,000 2.48 0.988 79% 31%
Marche 3,000 2.15 0.955 89% 46%
Molise 1,000 2.17 0.992 87% 48%
Piemonte 1,000 2.04 0.987 94% 50%
Puglia 10,000 2.45 0.990 83% 42%
Sardegna 2,000 2.16 0.992 88% 43%
Sicilia 7,000 2.25 0.982 86% 37%
Toscana 8,000 2.31 0.991 86% 42%
Trentino-Alto Adige 1,500 2.30 0.982 90% 55%
Umbria 2,500 1.96 0.966 94% 55%
Valle d’Aosta 500 2.19 0.926 94% 65%
Veneto 5,500 2.58 0.980 83% 46%

that the city pattern controls the number of mutual relations between towns, which in turn
affect the system itself. The latter figure reproduces in a geo-spatial way the distribution of the
weekly macro mobility flows among the Italian provinces and is based on the data of the City
Analytics solution proposed by Enel X, aimed at producing statistical indicators to support the
country during the first period of the Covid-19 emergency. In particular, Fig. 5c referring to the
third week of January 2020, incidentally the period just before the outbreak of the pandemic
in Italy, shows how much percentage of the population traveled between the provinces during
the week considered (Enel X and Here - City Analytics 2020). In the figure that percentage is
indicated by the thickness of the connections, although this is not significant for the present
study.

The population data were analyzed at the regional level also, verifying similarities and dis-
similarities with the national configuration. For each region, the city size probability distribution
p
n

was estimated, by identifying a power law above a breakpoint n0, which was recognized in
all cases as expected. Some results are shown in Table 2, where the estimated values of n0, the
estimates of the power law exponent 𝛾 , the coefficient of determination R2 achieved by fitting
the theoretical power law to data, the percentage of the population living in cities with a number
of inhabitants greater than the breakpoint, and the percentage of cities above it, are reported.
The n0 values were estimated as those maximizing the R

2 for the power law referred to the
city-size exceedance probability of the cities having population greater than n0. Analyzing these
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Figure 6. (a) Correlation between the percentage of population living in cities with n > n0 and
the estimates of 𝛾 for the right-hand tail of city size distributions in all Italian regions; (b)
correlation between the average size (on the ordinate axis) of towns with n < n0 and with n0 for
all Italian regions.

results, one may note the following significant issues. In almost all regions the breakpoint is
much lower than 10,000 inhabitants as instead estimated at the national scale. This indicates
that some smaller towns that do not participate in the more homogeneous group of cities at the
national scale are somehow connected to a closer bigger city acting as a local hub. Consequently,
one may think that these towns are likely to exploit the services provided nationally if and
only if a local hub mediation is possible, and that a regional integration is found on the basis
of acceptance of services and opportunities certainly lower than those fully provided at the
national scale. In all regions, the percentage of population living in the group of towns above
the breakpoint is always greater 80%, although the percentage of the number of towns above
that point is less than 50% in the majority of cases. This indicates that although the percentage
of inhabitants which are more likely excluded by the national system remains low enough, it is
spread on a not negligible number of towns. As regards the orographic control, it is noteworthy
that for all the regions where n0 is at least 5,000 inhabitants the percentage of mountainous
areas remains below 40%, thus indicating that the population self-organizes in not too small
towns in sufficiently flat areas only. In Fig. 6a, it is shown that there is a correlation between
the estimated values of γ and the percentage of population belonging to the group of larger and
more integrated towns, with a tendency of the latter to decrease as the former increases. This
is well interpreted in the light of the evolution model proposed in this article, suggesting that γ
decreases toward the limit value 2 (Zipf’s law) as more and more citizens are included into the
complex system of larger cities. Also, this is in agreement with the second of equations (15).
In Fig. 6b a very strong correlation between n0 and the average size of towns having n < n0

is shown, which indicates that the more the system of cities tends to organize in larger units
the bigger are the smaller towns less connected to the remainder of the region. Although this is
a somehow obvious result, the elevated value of the coefficient of determination (R2 = 0.972)
may suggest further future investigation. These results are in line with the meta-analysis carried
out by Cottineau (2017), which related the scaling exponent 𝛾 to other geographical descriptors.
Significant cases emerge for different regions, four of which are reported below. First, let us
consider Lazio Region, where the largest city of the country is located. This is one of the regions
for which the right-hand tail of the city size distribution closely approximates a perfect Zipf’s
law with 𝛾 = 2 (Table 2). Coherently a very low value of n0 (2,000 inhabitants) and the highest
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Figure 7. Four Italian regions: (a) Lazio, (b) Puglia, (c) Emilia Romagna, and (d) Basilicata.
From left to right: City size sketch, exceedance frequencies for all the municipalities in the
region, and exceedance frequencies for those municipalities which are well fitted by a power law
distribution.

percentage of population living in towns with size greater than n0 are observed too (𝜉 = 97%).
It seems evident of the influence of Rome as capital city, which acts as an attractive pole for
the cities in its hinterland and redistributes the population more evenly along the coast, and in
the less mountain internal areas (Fig. 7a). One should also notice a rather equal distribution of
municipalities in the two ranges divided by n0 (ν = 57%), meaning that there is a great number of
very small towns, which will likely tend to aggregate with each other or disappear in the future.
A different behavior is observed for the Puglia Region (South-East of peninsula), which is the
only one amongst all that maintains a breakpoint n0 equal to the one observed at the national
scale (10,000 inhabitants). This is emblematic, as it demonstrates how favorable climatic and
geographic features, such as flat orography and temperate climate due to the proximity to the
coast, induce a higher connection level where population is more equally distributed, so that
depopulation of territory is less significant (Fig. 7b). The case of Emilia-Romagna is reported
here too, which in line with other regions in northern Italy, such as the Lombardy region, presents
a level of homogeneity for city sizes greater than 5,000 inhabitants. In this case, it is evident how
the municipalities are aggregated along the main – and historical – roads, so showing how
important infrastructure networks are in the logic of settlement in the territory (Fig. 7c). Finally,
let us consider the Basilicata Region (Fig. 7d), which is one the southern regions suffering for
a still active depopulation process. Here, n0 = 2,500 is almost low as in the Lazio Region but
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the city acting as a local hub is much smaller than Rome and the power law exponent of the
city size distribution is still far from 2 (i.e., 𝛾 = 2.4). Thus, it is depicted as a region with a
lower level of internal connection where its city size distribution can be seen as the mirror of a
system that finds his homogeneity on the basis of acceptance of a lower standard for services and
opportunities.

Conclusions

In this work attention was paid to the experimental evidence that right-hand tail of city-size
probability distribution is mostly well fitted by a power law.

First, it shed more light on the way complexity affects this behavior by demonstrating
that power law emerges as the maximum entropy distribution, once the complex connections
between cities arise. In particular, it has been shown that the power law occurs when the city
size organization is controlled by two probability distributions, the first providing the probability
for a city to have a certain number or inhabitants and the latter giving the probability that a
person resides in a town of a given number of citizens. It was also emphasized that all the towns
contributing to that power law represent a group of elements which are integrated institutionally
and economically, so that it cannot be excluded that a citizen moves from one city to another,
regardless of city size. Second, a new two-stage model was hypothesized for the evolution of
city-size systems, which was analyzed by exploiting the thermodynamical analogy that allows a
physical interpretation of probability distribution parameters. In this light, it was demonstrated
that a complex system of cities grows capturing towns progressively smaller into the city-size
power law. Thus, the power law exponent 𝛾 continuously decreases and easily gets values below
3, while much more energy is needed to push it toward 2, that is, the value corresponding to
well-known Zipf’s law. All the assumed assumptions were strongly supported by the analyses
carried out by using population data. European data were used to demonstrate that the right-hand
tail of the nation-size probability distribution is fitted by an exponential law rather than a power
law, indicating that the ensemble of nations is much less complex than that of the cities within
each nation, and confirming the hypothesis that complexity underlying a power-law probability
distribution is related to the linguistic and institutional homogeneity linking the elements of the
set taken into account. The Italian population census data based on the year 2019 regarding
about 8,000 Italian municipalities were used too. It was found that the Italian city system is
complex and integrated for towns with more than 10,000 residents, for which the size distribution
shows a good fit to a power law with the exponent γ = 2.4. In addition, it was demonstrated
that the smaller towns, which do not contribute to the overall complexity, suffer an evident
geographic and orographic control. Analyses were carried out at a regional level too, which
showed that at this scale too systems of cities whose size distribution is well described by a
power law are identified. In this case, different from the national scale, even towns smaller than
10,000 inhabitants are statistically linked to a larger city acting as a local hub. The minimum
size of towns participating in the group leading to the power law is inversely correlated to the
percentage of regional population living in this group of towns. The presence of towns that
although disconnected at the national level keep a link to the less small cities in the region let
us conclude that at the regional scale the complexity that induces homogeneity between towns
is found on the basis that, in comparison to the national level, may tolerate the lack of services
and opportunities, which are provided at this latter scale only. In conclusion, we would like to
remark that this article reconciles city-size distribution analysis with the theory of complexity and
may shed more light on the distribution inner structure too. In addition, the results we achieved
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indicate that the suggested hypotheses may confidently be assumed to drive new studies on the
organization of ensemble of cities.
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Appendix A

Shannon entropies

Let us derive equation (11), which expresses the local entropy (10) as a function of the two
coarse-grained entropies (8) and (9). Moving from a sum over cities to a sum over population
classes, it is easy to recognize that
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Equation (A1) then allows us to recast the entropy (9) in the following form:
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where we used definitions (3) and (5). By making use of the normalization condition
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Equation (A2) immediately provides:
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which only differs from relation (11) by constant lnA.

Boltzmann statistics

Both Shannon entropy and Jaynes’ principle can be founded on a solid statistical-mechanical
basis. It can indeed be easily shown that equation (8) may be drawn from the Boltzmann entropy
S = K

B
lnW , which counts the number W of microstates corresponding to a given energy

configuration that the molecules of an ideal gas can occupy, where K
B

denotes the Boltzmann
constant. In our scheme, the gas of particles is represented by the statistical ensemble G

A
of

cities, whose elements are grouped in Ω clusters each of which containing a
n

cities of size n.
This allows us to interpret the population class n as the energy level of the nth cluster: as it is
usual in thermodynamic statistics, the energy amount of the nth level can indeed be assumed to
be equal to E

n
= ne, so that every energy level is interspersed by a constant energy value equal

to e. In this work, without losing generality, we will always assume e = 1, as we are interested
in the dependence of the energy on the population value n only.
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By simple counting arguments, the number W of ways of arranging A distinguishable cities in
Ω clusters, with the nth cluster containing a

n
cities of energy E

n
, is given by the multinomial

coefficientW = A!∕
∏

n
a
n
!, for 1 ≤ n ≤ Ω. By substituting the expression forW in the Boltzmann

entropy, and in the limit for large A, the Gibbs entropy of a system of cities is achieved, which
is the same as the Shannon entropy (8) up to the Boltzmann constant. It follows the city size
distribution p

n
can be interpreted as the probability of finding a city in the nth energy level too.

The same arguments can be used to derive the Shannon entropy (9), with the citizens in the
place of cities. According to the above scheme, the Gibbs–Shannon entropy (8) also measures
the disorder enclosed in the city size distribution due to the arrangement of cities in energy
levels. The second law of thermodynamics thus imposes that, for an isolated system of towns,
the most probable city size distribution is the one that maximizes the entropy (8), subject to the
sole normalization condition: ∑

n

p
n
= 1, (A3)

which is nothing but equation (4) expressed in terms of probability p
n
, where the sum ranges

from 1 to the number Ω of energy levels. This distribution can be achieved by making use of the
Lagrange multiplier method, which in this appendix is described by following Singh (2013).
In such a case, the Lagrange functional assumes the following expression:

 (p
n

)
= −

∑

n

p
n

ln p
n
− 𝜆

∑

n

p
n
+ 𝜆, (A4)

where 𝜆 is the Lagrange multiplier corresponding to constraint (A3). By equating to zero the first
derivative of (A4) with respect to p

n
, one obtains the uniform distribution p

n
= 1∕Ω, which states

every energy level of the ensemble of cities is equally likely. Note that because of relation (6),
the citizen distribution by population classes corresponding to p

n
= 1∕Ω is given by r

n
= n∕Λ1,

where the normalization factor Λ1 is finite for a finite number of clusters. By proceeding as
above, for an isolated system of citizens, the entropy (9) attains its unconstrained maximum value
in correspondence of the uniform distribution r

n
= 1∕Ω, whose related city size distribution via

equation (6) is p
n
= 1∕nΛ2, where constant Λ2 is finite for finite Ω, again.

On the other hand, an isolated thermodynamic system is purely an ideal abstraction, since any
system in a thermal equilibrium exchanges energy with the surroundings that act as a heat bath
at a fixed temperature T . One thus expects some fluctuation of the internal energy around the
time average value. Due to the ergodic hypothesis, the average over time can be assumed to
be equal to the ensemble average of the energy over all levels accessible to the system. For a
like-Boltzmann equilibrium configuration, which may realize at a precomplex stage, the internal
energy of the system of cities is therefore given by the average population value:

E =
∑

n

np
n
= ⟨n⟩. (A5)

Driven by the energy flow through thermal contact with an environment, a precomplex system
of cities thus will eventually settle down to an equilibrium state at which the entropy (8) reaches
the maximum value under the energy constraint (A5), plus the normalization condition (A3). In
this case, the Lagrange functional assumes the following expression:

 (p
n

)
= −

∑

n

p
n

ln p
n
− 𝜆

∑

n

p
n
+ 𝜆 − 𝛽

∑

n

np
n
+ 𝛽⟨n⟩, (A6)
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where 𝛽 is the Lagrange multiplier associated to the constraint (A2.3). By making the first
derivative of (A6) with respect to p

n
equal to zero, we obtain the exponential distribution

p
n
= e

−𝛽n
∑

n
e
−𝛽n , (A7)

for the population n, according to the Boltzmann statistics for the energy configuration of a gas
of particles. The Lagrange multiplier 𝛽 thus plays the role of an inverse generalized temperature
T = 1∕𝛽. Accordingly, in the limit for 𝛽 → 0 (high temperatures), (A7) boils down to the uniform
distribution p

n
= 1∕Ω, thus regaining the unconstrained equilibrium state for the ensemble of

cities. Importantly, derived by using condition (A3) in the limit for large energy levels, the
normalization factor

Z(𝛽) =
∞∑

n=1

e
−𝛽n
, (A8)

which converges for 𝛽 > 0, is known as the partition function, so named because it expresses the
partition of energies over all possible states the system particles have at disposal, where particles
and states stand here for cities and population classes, respectively. The special role played by
the partition function lies in the fact that any other thermodynamic variables can be expressed by
means of (A8). For instance, the internal energy (A5) can be extracted from the partition function
as follows:

E = ⟨n⟩ = −𝜕 lnZ(𝛽)
𝜕𝛽

, (A9)

which shows that (A8) acts as the generating function of the average energy of the system.
Furthermore, substitution of distribution (A7) in entropy (8) gives the maximum entropy value
S as follows:

⟨n⟩ − TS = −T lnZ(𝛽), (A10)

where we exploited relation T = 1∕𝛽. Since E = ⟨n⟩, the LHS of (A10) provides the Helmholtz
free energy, which represents the work the system can operate onto the environment. Up to the
Boltzmann constant, it follows from (A10) that the statistical-mechanical expression for this
function is given by:

F = −T lnZ(𝛽). (A11)

It is worth highlighting that equations (A7)–(A11) come from assuming the first-order moment
of the population n as the driving force for a precomplex system of cities to move toward an
equilibrium state. This is a straightforward consequence of the Boltzmann hypothesis, according
to which the system is assumed to be immersed in an environment that only plays the role of
a thermal reservoir, which ensures the temperature to keep fixed, while energy may fluctuate,
but the details of such an environment are totally irrelevant to the system equilibrium. On the
other hand, the energy constraint (A5) has been introduced in the article from an evolution
perspective too. The mean city size indeed gives the characteristic population scale which
controls the city system organization when the probabilityΠ

i
that a person choses to live in a city

i is assumed to be uniformly distributed. This hypothesis is thus coherent with an unstructured
thermal environment whose components interact as much randomly as possible. Thus, from a
thermodynamic perspective, the energy amount of a pre-complex system of cities is peaked at the
characteristic population scale ⟨n⟩, while energy levels higher than the mean one exponentially
decay.
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Entropy competition, and thermodynamic analogy

In this work, far from acting like a simple thermostat, we assumed the environment to be
itself a well-structured statistical ensemble, precisely represented by the citizen ensemble G

N
,

whose structure remains tied to that of the actual system G
A

through the constitutive relationship
(6). One thus expects the equilibrium configuration to be reached by the system, which
we named complex in this case, be totally different from that described by the Boltzmann
exponential distribution. In particular, as discussed in the article, when a system of citizens
acts as an environment for an ensemble of cities, the phenomenon of entropy competition
that emerges in these circumstances allows us to set the logarithmic expectation value of the
population ∑

n

p
n

ln n = ⟨ln n⟩
p
, (A12)

as the least biased thermodynamic constraint to use for maximizing entropy (8), in addition
to the normalization condition (A3) (see equations 12). In fact, since the information function
for any probability is defined as minus the logarithm of the probability itself, Equation (A12)
formally represents the cross-entropy function that gives the average value over the city
probability space of the information related to the prior probability p

n
= 1∕nΛ2, which in

turn corresponds to the uniform citizen distribution r
n
= 1∕Ω, according to the unconstrained

maximum value of the entropy (9). The Lagrange functional then assumes the following
expression:

 (p
n

)
= −

∑

n

p
n

ln p
n
− 𝜆

∑

n

p
n
+ 𝜆 − 𝛾

∑

n

p
n

ln n + 𝛾⟨ln n⟩
p
, (A13)

where 𝛾 is the Lagrange multiplier associated to the constraint (A12). Equating to zero the first
derivative of (A13) with respect to p

n
leads to the following power-law city size distribution:

p
n
= n

−𝛾

𝜁 (𝛾)
, (A14)

where the normalization factor

Z
p
= 𝜁 (𝛾) =

∞∑

n=1

n
−𝛾 =

∞∑

n=1

e
−𝛾 ln n

, (A15)

derived by using condition (A3) in the limit for large clusters again, is the Riemann zeta function
that converges for 𝛾 > 1. In (A15), in order to highlight that ln n acts as a thermal energy
per population class and the power law exponent stands for a generalized inverse temperature
T
p
= 1∕𝛾 , the Boltzmann factor e−𝛾 ln n has been made explicit. Thus, while the sum over n

again must be understood to be a sum over all energy levels the cities can assume, the energy
amount per level is no longer given by the population n but its logarithm ln n. It follows the
logarithmic mean of the population plays the role of internal energy for a complex system
of cities:

E
p
= ⟨ln n⟩

p
= −

𝜕 lnZ
p

𝜕𝛾

, (A16)

where the LHS just returns to the constraint (A12), while the RHS shows how the partition
function acts as the generating function of the internal energy once more. Note that in the
limit for 𝛾 → 0, (A14) reduces to the uniform distribution p

n
= 1∕Ω as well. Moreover, in
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a manner similar to what was done for the exponential case, knowing the partition function
enables us to achieve the following expression for the free energy of a complex system of
cities:

F
p
= −T

p
lnZ

p
, (A17)

which is understood to hold up to the Boltzmann constant, again.
Finally, by making use of the relation (6), the citizen distribution by population classes
corresponding to the most probable city size distribution (A14) can be shown to follow the power
law

r
n
= n

1−𝛾

𝜁 (𝛾 − 1)
, (A18)

which as a function of the scale exponent 𝛾 is delayed by 1 with respect to the city size
distribution. As above, the partition function for a complex system of citizens in a thermal
equilibrium at a temperature T

r
= 1∕(𝛾 − 1) is given by the normalization factor

Z
r
= 𝜁 (𝛾 − 1) =

∞∑

n=1

n
1−𝛾 =

∞∑

n=1

e
−(𝛾−1) ln n

, (A19)

where making explicit the Boltzmann factor again enables us to recognize that the internal energy
for a complex system of citizens is defined by

E
r
=
∑

n

r
n

ln n = ⟨ln n⟩
r
= −

𝜕 lnZ
r

𝜕𝛾

, (A20)

where the subscript refers to the fact the logarithmic mean is calculated on the basis of the
r
n

distribution. As usual, up to the Boltzmann constant, from the partition function (A19) the
following expression comes for the free energy:

F
r
= −T

r
lnZ

r
. (A21)
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