27,573 research outputs found

    Non-Fermi-liquid behavior and anomalous suppression of Landau damping in layered metals close to ferromagnetism

    Get PDF
    We analyse the low-energy physics of nearly ferromagnetic metals in two spatial dimensions using the functional renormalization group technique. We find a new low-energy fixed point, at which the fermionic (electron-like) excitations are non-Fermi-liquid (zf=13/10z_f = 13/10) and the magnetic fluctuations exhibit an anomalous Landau damping whose rate vanishes as Γqq3/5\Gamma_{\bf q} \sim \vert {\bf q} \vert^{3/5} in the low-q\vert {\bf q} \vert limit. We discuss this renormalization of the Landau-damping exponent, which is the major novel prediction of our work, and highlight the possible link between that renormalization and neutron-scattering data on UGe2_2 and related compounds. Implications of our analysis for YFe2_2Al10_{10} are also discussed.Comment: 5 pages, 3 figures; action modified to include spin of fermions, resulting in quantitative changes to exponents but same essential physic

    Protein gradients in single cells induced by their coupling to "morphogen"-like diffusion

    Full text link
    One of the many ways cells transmit information within their volume is through steady spatial gradients of different proteins. However, the mechanism through which proteins without any sources or sinks form such single-cell gradients is not yet fully understood. One of the models for such gradient formation, based on differential diffusion, is limited to proteins with large ratios of their diffusion constants or to specific protein-large molecule interactions. We introduce a novel mechanism for gradient formation via the coupling of the proteins within a single cell with a molecule, that we call a "pronogen", whose action is similar to that of morphogens in multi-cell assemblies, the pronogen is produced with a fixed flux at one side of the cell. This coupling results in an effectively non-linear diffusion degradation model for the pronogen dynamics within the cell, which leads to a steady-state gradient of the protein concentration. We use a stability analysis to show that these gradients are linearly stable with respect to perturbations.Comment: To appear in J. Chem. Phy

    Deep Multitask Learning for Semantic Dependency Parsing

    Full text link
    We present a deep neural architecture that parses sentences into three semantic dependency graph formalisms. By using efficient, nearly arc-factored inference and a bidirectional-LSTM composed with a multi-layer perceptron, our base system is able to significantly improve the state of the art for semantic dependency parsing, without using hand-engineered features or syntax. We then explore two multitask learning approaches---one that shares parameters across formalisms, and one that uses higher-order structures to predict the graphs jointly. We find that both approaches improve performance across formalisms on average, achieving a new state of the art. Our code is open-source and available at https://github.com/Noahs-ARK/NeurboParser.Comment: Proceedings of ACL 201

    A four year longitudinal sero-epidemiology study of Neospora caninum in adult cattle from 114 cattle herds in south west England : associations with age, herd and dam-offspring pairs

    Get PDF
    Background: Neosporosis caused by the protozoan parasite Neospora caninum, is an economically important cause of abortion, stillbirth, low milk yield, reduced weight gain and premature culling in cattle. Consequently, a seroepidemiological study of N. caninum antibodies was conducted in England with 29,782 samples of blood taken from 15,736 cattle from 114 herds visited on three occasions at yearly intervals. Herds were categorised into lower (< 10%) and higher (≥ 10%) median herd seroprevalence. Hierarchical models were run to investigate associations between the sample to positive (S/P) ratio and herd and cattle factors. Results: Ninety-four percent of herds had at least one seropositive cow; 12.9% of adult cattle had at least one seropositive test. Approximately 90% of herds were seropositive at all visits; 9 herds (8%) changed serological status between visits. The median N. caninum seroprevalence in positive herds was 10% (range 0.4% to 58.8%). There was a positive association between the serostatus of offspring and dams that were ever seropositive. In the hierarchical model of low seroprevalence herds there was no significant association between S/P ratio and cattle age. There was a significantly lower S/P ratio in cattle in herds that were totally restocked after the foot-and-mouth epidemic of 2001 compared with those from continuously stocked herds and cattle purchased into these herds had a higher S/P ratio than homebred cattle. In the model of high seroprevalence herds the S/P ratio increased with cattle age, but was not associated with restocking or cattle origin. Conclusion: There were no strong temporal changes in herd seroprevalence of N. caninum but 90% of herds had some seropositive cattle over this time period. Vertical transmission from seropositive dams appeared to occur in all herds. In herds with a high seroprevalence the increasing S/P ratio in 2–4 year old cattle is suggestive of exposure to N. caninum: horizontal transmission between adult cattle, infection from a local source or recrudescence and abortions. Between-herd movements of infected cattle enhance the spread of N. caninum, particularly into low seroprevalence herds. Some restocked herds had little exposure to N. caninum, while in others infection had spread in the time since restocking

    The coevolution of toxin and antitoxin genes drives the dynamics of bacterial addiction complexes and intragenomic conflict

    Get PDF
    Bacterial genomes commonly contain ‘addiction’ gene complexes that code for both a toxin and a corresponding antitoxin. As long as both genes are expressed, cells carrying the complex can remain healthy. However, loss of the complex (including segregational loss in daughter cells) can entail death of the cell. We develop a theoretical model to explore a number of evolutionary puzzles posed by toxin–antitoxin (TA) population biology. We first extend earlier results demonstrating that TA complexes can spread on plasmids, as an adaptation to plasmid competition in spatially structured environments, and highlight the role of kin selection. We then considered the emergence of TA complexes on plasmids from previously unlinked toxin and antitoxin genes. We find that one of these traits must offer at least initially a direct advantage in some but not all environments encountered by the evolving plasmid population. Finally, our study predicts non-transitive ‘rock-paper-scissors’ dynamics to be a feature of intragenomic conflict mediated by TA complexes. Intragenomic conflict could be sufficient to select deleterious genes on chromosomes and helps to explain the previously perplexing observation that many TA genes are found on bacterial chromosomes
    corecore