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We analyze the low-energy physics of nearly ferromagnetic metals in two spatial dimensions using the
functional renormalization group technique. We find a new low-energy fixed point, at which the fermionic
(electronlike) excitations are non-Fermi-liquid (zf ¼ 13=10) and the magnetic fluctuations exhibit an
anomalous Landau damping whose rate vanishes as Γq ∼ jqj3=5 in the low-jqj limit. We discuss this
renormalization of the Landau-damping exponent, which is the major novel prediction of our work, and
highlight the possible link between that renormalization and neutron-scattering data on UGe2 and related
compounds. Implications of our analysis for YFe2Al10 are also discussed.
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Introduction.—The problem of describing the low-
temperature behavior of metals close to a magnetic instabi-
lity is now several decades old, and many experimental
examples are available. These include the cuprate super-
conductors [1], heavy fermion materials [2,3], and nearly
ferromagneticmetals [4].Amongthephenomenaobservedin
them are non-Fermi-liquid behavior of the conduction
electrons, anomalous power laws in thermodynamic observ-
ables, and the emergence of new phases in the vicinity of the
instability point. That point is commonly modeled by
coupling fermions with a gapless Fermi surface (the elec-
trons) to a massless boson (representing the magnetic
fluctuations).
The distinction between an instability to ferromagnetism

and an instability to antiferromagnetism is an important
one. For incipient antiferromagnets, the magnetic fluctua-
tions are peaked at some nonzero wave vector Q, and
scatter the electrons between certain “hot spots” on the
Fermi surface. In this Letter, however, we address the
ferromagnetic case; furthermore, we work in two spatial
dimensions, in which this is a strong-coupling problem.
Because the instability is ferromagnetic, the magnetic
fluctuations are peaked at Q ¼ 0, which implies strong
forward scattering at every point on the Fermi surface.
Nonetheless, the induced correlations between the fermions
are strongest between points on the Fermi surface which
have a common tangent. These regions, known as
“patches,” are often (though not in this Letter) the only
parts of the Fermi surface that are retained in theories of
ferromagnetic quantum criticality [5–10].
Because of the quantum-mechanical effects that prevail

at such low temperatures, one cannot separate the static and
dynamic properties of the system. To address this issue,
Hertz put forward his theory of quantum criticality in the
1970s [11]. An important physical ingredient of the
Hertz theory is Landau damping: the decay of magnetic

fluctuations into quasiparticle-quasihole pairs. Hertz inte-
grated out the fermions to produce a purely bosonic
description of the quantum critical point [11,12]: the boson
propagator is modified by the Landau-damping term in the
expansion of the particle-hole bubble, enforcing a bosonic
dynamical exponent zb ¼ 3, and the critical point is
reduced to a conventional scalar field theory. But the
Hertz theory is unsatisfactory, as it assumes a Fermi-liquid
form of the fermion propagator. In addition, more careful
analyses suggest that multiparamagnon interactions
become singular, rendering a purely bosonic description
invalid [11,13].
The failure of Hertz-type theories has motivated a

concentration on theories that retain both the electronic
(fermionic) and magnetic (bosonic) degrees of freedom in
their low-energy description. Such a theory may be treated
by the standard Wilsonian renormalization approach
[14,15]; this results in a non-Fermi-liquid fixed point in
an expansion in ϵ ¼ 3 − d. However, this approach does
not capture the onset of Landau damping, and thus gives
physically incorrect results at low energies.
An alternative approach is to calculate the one-loop

fermionic self energy using the Landau-damped propagator
of Hertz theory. The one-loop dynamic self-energy scales
as ω2=3 [5,16–18], dominating the bare dynamic term ω in
the low-energy limit. Despite the fact that the procedure
used to obtain this result is clearly not self-consistent, the
ω2=3 form of the self-energy was argued to be exact by
Rech et al. [19], via an Eliashberg approach which is
controlled by a large-Nf limit. However, Lee [6] showed
that a class of planar diagrams causes the large-Nf methods
to fail below a certain energy scale; this was confirmed by
explicit three-loop calculations by Metlitski and Sachdev
[7]. Thus, despite recent intensive work [8–10,20], the
problem of fermions interacting with an overdamped
critical bosonic mode remains unsolved.
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In this work, we present a functional renormalization
group (FRG) analysis of the ferromagnetic critical point. We
assume the existence of a continuous phase transition,
ignoring questions of the stability of the fixed point
[19,21,22]. Our treatment explicitly includes Landau damp-
ing, using a method recently applied by Lee, Strack, and
Sachdev to an antiferromagnetic quantum critical point in a
lattice model [23]. It relies neither on a patch method nor on
a large-Nf expansion [24]: we retain the full Fermi surface at
all stages in the flow. This produces vertex corrections that
are absent in the patch approach, resulting in a novel
dependence of the Landau-damping rate on the wave vector
of the magnetic fluctuations. This surprising result is the
chief novel prediction of our work.
Flow equations.—We begin with a model of spin-1=2

fermions ψα with a circular Fermi surface, and couple these
to a bosonic field ϕ via a Yukawa coupling g:

S ¼ −
Z
ωk

ψ̄α
ωkðiω − ~kÞψα

ωk þ 1

2

Z
Ωq
ðjqj2 þm2Þϕ�

Ωq · ϕΩq

þ g
Z
ωk

Z
Ωq

ψ̄α
ωþΩ;kþqσ

αβψβ
ωk · ϕΩq: ð1Þ

Here α and β are spin indices, ~k≡ jkj − kF describes the
linearized dispersion of the fermions near the Fermi
momentum kF, and m is the boson mass, which is set to
zero since we work at criticality. We use the notation

R
ωk ¼

ð2πÞ−3 R∞
−∞ dω

R j~kj<ΛUV d2k and
R
Ωq ¼ ð2πÞ−3 R∞

−∞ dΩR jqj<ΛUV d2q, where ΛUV ≪ kF is an ultraviolet cutoff.
We do not include any dynamics of the boson in the bare
action (1); the dynamics will be generated via the inter-
actions with the fermions.
As usual in FRG analysis, we follow the flow of the

generating functional of one-particle irreducible vertex
functions ΓΛ

R as the infrared scale Λ is reduced from
ΛUV to zero [25–27]:

d
dΛ

ΓΛ
R ¼ 1

2
STrð∂ΛRΛ½Γð2ÞΛ

R þ RΛ�−1Þ: ð2Þ

The generating functional ΓΛ
R flows from the microscopic

action ΓΛUV
R ¼ S to the effective action ΓΛ→0

R ¼ Γ. Our
truncation of ΓΛ

R includes only the dressed fermionic
propagator GΛ

f , the dressed bosonic propagator DΛ
b , and

the Yukawa coupling gΛ. The regulator RΛ cuts off the
infrared divergences in the fermionic and bosonic propa-
gators; however, in order to capture the physics of Landau
damping—which is generated only by low-energy fermions
—we must follow Lee, Strack, and Sachdev [23] and set the
fermionic regulator function to zero.
The fermionic matrix element of ½Γð2ÞΛ

R þ RΛ�−1jϕ¼0 is

GΛ
f ðω;kÞ ¼ ðiω − ~k − ΣΛ

f ðω;kÞÞ−1; ð3Þ

where ΣΛ
f ðω;kÞ represents the fermion self energy. We will

only be interested in the low-energy behavior of the model
and so will parametrize the self energy as

ΣΛ
f ðω;kÞ ¼ ð1 − AΛ

ωÞiω − ð1 − AΛ
k Þ~k; ð4Þ

where the Fermi momentum has been kept fixed. We may
use these parameters to calculate the renormalized
Fermi velocity, vΛf ¼ AΛ

k =A
Λ
ω, and the quasiparticle weight,

ZΛ
f ¼ 1=AΛ

ω, at all stages of the flow.
The flow of the fermion self energy, corresponding to the

diagram shown in Fig. 1(a), is given by

∂ΛΣΛ
f ðω;kÞ ¼ 3ðgΛÞ2

Z
R

Ωq
GΛ

f ðωþΩ;kþ qÞDΛ
b ðΩ;qÞ;

ð5Þ

where
R
R
Ωq ¼ R

Ωqð−∂ΛRΛÞ∂RΛ acts on the bosonic
propagator.
The bosonic matrix element of ½Γð2ÞΛ

R þ RΛ�−1 is

DΛ
b ðΩ;qÞ ¼ −(maxðjqj2;Λ2Þ þ ΣΛ

b ðΩ;qÞ)−1; ð6Þ

where we have used the regulator RΛ ¼ ðΛ2 − jqj2Þ×
ΘðΛ2 − jqj2Þ, Θ being the step function. ΣΛ

b ðΩ;qÞ is the
bosonic self-energy. Since the fermionic regulator function
has already been set to zero, the fermions naively give no
contribution to the flow of the bosonic propagator. Hence,
following Lee, Strack, and Sachdev, we must define
ΣΛ
b ðΩ;qÞ via the self-consistency relation

ΣΛ
b ðΩ;qÞ ¼ BΛ jΩj

jqj ; ð7Þ

where BΛ is the coefficient of the Landau-damping term in
the low-frequency expansion, jΩj ≪ vΛf jqj, of the particle-
hole bubble ΠΛ

phðΩ;qÞ ¼ 2ðgΛÞ2 Rωk GΛ
f ðωþΩ;kþ qÞ×

GΛ
f ðω;kÞ shown in Fig. 1(b). Since we use a low-frequency

expansion, Eq. (7) should contain a step function restricting

(a)

(b) (c)

FIG. 1. The diagrams governing the FRG flow of (a) the
fermionic self-energy ΣΛ

f , (b) the bosonic self-energy ΣΛ
b , and

(c) the Yukawa coupling, gΛ. The dash indicates a derivative with
respect to the bosonic regulator.
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the self-energy to the low-frequency regime. However,
including it does not materially change our results, so we
omit it for simplicity.
The flow of the Yukawa coupling gΛ is given by the

diagram in Fig. 1(c):

∂ΛgΛ ¼ −ðgΛÞ3

×
Z

R

Ωq
½GΛ

f ðωþΩ;kþ qÞ�2DΛ
b ðΩ;qÞ

����
~k¼0;ω¼0

; ð8Þ

where we have set external frequencies and momenta to
zero (~k ¼ 0 for fermions), i.e., we follow only the forward-
scattering part of the vertex. The flow equations, (5)
and (8), and the self-consistency relation, Eq. (7), com-
pletely determine the flow of our truncation of ΓΛ

R.
Parametrizing the flow.—During the flow, the depend-

ences of the fermionic propagator on the frequency and the
momentum (as described by AΛ

ω and AΛ
k ) and the Yukawa

coupling (gΛ) will all be renormalized. The dependence of
these parameters on Λ defines a set of anomalous dimen-
sions: ηΛω, ηΛk , and ηΛg . These are given by

ηΛω ¼ −
d lnAΛ

ω

d lnΛ
; ηΛk ¼ −

d lnAΛ
k

d lnΛ
; ηΛg ¼ −

d ln gΛ

d lnΛ
:

ð9Þ

Furthermore we introduce the dimensionless variables

~BΛ ¼ BΛ

Λ2
; ~gΛ ¼ gΛffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΛAΛ
ωAΛ

k

q : ð10Þ

The anomalous dimension ηΛω is determined by the scale
dependence of the correction to the iω term in the fermionic
self-energy, Eq. (4). This may be obtained by setting ~k to
zero on the right-hand side of Eq. (5), taking an iω
derivative and the limit ω → 0:

ηΛω ¼ 6ð~gΛÞ2
Z jqj<1

q

Z
Ω

1

ðiΩ − jqj cos θÞ2
1

ðvΛf ~BΛ jΩj
jqj þ 1Þ2

:

ð11Þ

The integral in Eq. (11) depends on the scale only through
vΛf ~B

Λ, so Eq. (11) defines a function fðxÞ by ηΛω ¼
ð~gΛÞ2fðvΛf ~BΛÞ. fðxÞ is monotonically increasing, with
the limiting values fðx → 0Þ ¼ 0 and fðx → ∞Þ ¼ 3=π2.
The anomalous dimension ηΛk is determined by the

correction to the ~k term in the fermionic self-energy,
Eq. (4). This may be obtained by setting ω to zero on
the right-hand side of Eq. (5) and then taking a ~k derivative:

ηΛk ¼ 6ð~gΛÞ2lim
~k→0

∂
∂ ~k

�Z jqj<1

q

Z
Ω

1

ðiΩ − ½~kþ jqj cos θ�Þ

×
1

ðvΛf ~BΛ jΩj
jqj þ 1Þ2

�
: ð12Þ

Again, the part in square brackets depends on the scale only
via vΛf ~B

Λ. The ~k derivative and the Ω integration do not
commute; this is a consequence of setting the fermionic
regulator function to zero. In terms of the function defined
by Eq. (11), ηΛk ¼ ð~gΛÞ2½fðvΛf ~BΛÞ − fð∞Þ�.
The particle-hole bubble, Fig. 1(b), determines the

bosonic renormalization parameter ~BΛ:

~BΛ ¼ kF
πΛ

ð~gΛÞ2
vΛf

: ð13Þ

Finally, we obtain the anomalous dimension of the Yukawa
coupling, ηΛg , which is precisely equal to minus one third
of the fermionic anomalous dimension at all scales,
ηΛg ¼ −ηΛω=3. This is in sharp contrast to a patch-based
treatment, in which ηΛg would be identically zero [8].
Low-energy fixed point.—From Eq. (10), we derive the

flow equation:

−Λ∂Λ ~gΛ ¼
�
1

2
þ ηΛg −

1

2
ηΛω −

1

2
ηΛk

�
~gΛ: ð14Þ

At the start of the flow, AΛUV
ω ¼ AΛUV

k ¼ 1. The value of ~gΛUV

does not matter, provided that it is nonzero; this is because,
in the absence of the bosonic mass term, there are no
relevant operators at the fixed point. According to Eq. (13),
a nonzero ~gΛUV implies a nonzero ~BΛUV ; in other words, we
need to include a small amount of Landau damping even in
the bare action to get the flow started.
For a finite-coupling fixed point, the term in the brackets

on the right-hand side of Eq. (14) must be zero, and hence
the anomalous dimensions at the fixed point obey
1 ¼ −2ηg þ ηω þ ηk. Furthermore, according to Eq. (13)
if ~gΛ remains finite at the fixed point, vΛf ~B

Λ must diverge
like Λ−1. This means that we need only compute the
limiting values of the right-hand sides of Eqs. (11) and (12)
as vΛf ~B

Λ → ∞. Consequently, at the fixed point, ηω ¼
−3ηg ¼ 3ð~g=πÞ2, while ηk ¼ 0, and hence [28]

ηω ¼ −3ηg ¼
3

5
; ηk ¼ 0; ~g ¼ πffiffiffi

5
p : ð15Þ

The scaling of the bosonic propagator follows from
Eqs. (13) and (15), whence BΛ ¼ ~BΛΛ2 ∼ Λ1−ηωþηk . The
general form of the resulting bosonic propagator contains
an unknown scaling function of jΩj=jqjzb . However, the
low-frequency limit jΩj ≪ jqjzb allows us to interpret Λ as
a momentum scale, whereupon the propagator becomes
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½ðDbðΩ;qÞ�−1 ∼
jΩj
jqj3=5 þ q2: ð16Þ

It follows that zb ¼ 13=5. This corresponds to the surpris-
ing result that the low-frequency magnetic fluctuations at
this fixed point have a Landau-damping rate of Γq ∼ jqj3=5,
as opposed to the usually expected Γq ∼ jqj.
The lack of a fermionic regulator in our approach results in

an apparent ambiguity when one tries to determine the
scaling form of the fermionic Green’s function. One option
would be to choose a scaling in which the fermionic and
bosonic momenta scale together, as in [24]; but in this
calculation that appears to be a poor choice for at least two
reasons. First, it yields results that do not agree with the one-
loop evaluation of the fermionic self-energy [17]whenvertex
corrections are neglected. Second, it results in the bosonic
and fermionic frequencies scaling differently as the fixed
point is approached. This suggests that we should rather
choose a scaling in which ω ∼Ω ∼ Λzb ; consistency then
requires different scaling for the fermionic and bosonic
momenta: ~k ∼ Λ2 whereas jqj ∼ Λ. This scaling recovers
the one-loop self-energy Σf ∼ ω2=3 when vertex corrections
are neglected, and furthermore is precisely the scaling that is
used in patch theories [5–10]. The resulting fermionic
propagator has the following ~k ¼ 0 form at the interacting
fixed point:

½Gfðω;kFÞ�−1 ∼ ω1−ðηω=zbÞ ∼ ω10=13; ð17Þ
and the following form at zero frequency:

½Gfð0;kÞ�−1 ∼ ~k1−ðηk=2Þ ∼ ~k: ð18Þ
Unlike in Ref. [7], the ~k dependence of this Green’s function
is unrenormalized. However, this is due to the absence in our
truncation of certain diagrams [6], included in [7,8,24], that
would provoke such a renormalization.
Equations (17) and (18) lead to a fermionic dynamical

exponent, zf ¼ zb=2 ¼ 13=10. The scaling may also be
characterized by a vanishing quasiparticle weight ZΛ

f ∼
Ληω ∼ Λ3=5 and a vanishing Fermi velocity vΛf ∼ Ληω−ηk ∼
Λ3=5 as Λ → 0. Equations (17) and (18) demonstrate the
non-Fermi-liquid character of the fermions at the fixed
point. A thermodynamic consequence of this is that, in the
non-Fermi-liquid regime above the quantum critical point,
the specific heat capacity should depend on temperature as
CðTÞ ∼ T1=zf ∼ T10=13 [30].
In summary, the fermionic and bosonic dynamical

exponents are given, respectively, by

zb ¼
13

5
; zf ¼

zb
2
¼ 13

10
: ð19Þ

Equations (16)—(19) are the main results of this Letter.
Discussion.—To compare our results with the literature

on this problem, we must extend them to the case in which

the fermions come in a large number of flavors, Nf. This
extension is straightforward: Nf appears only in those
diagrams containing a fermion loop, so the only place in
which it enters is in the determination of vΛf ~B

Λ. Since this is
in any case infinite at the fixed point, altering the value of
Nf makes no difference to our results.
As mentioned above, the zf ¼ zb=2 scaling that emerges

at the fixed point matches that used in patch theories.
However, to be forced to this scaling at the fixed point is
not the same as assuming it from the beginning. We began
with a full Fermi surface, not a set of patches, and we find
low-energy behavior that is inconsistent with the results of a
patch approach. In particular, the Landau damping of our
bosonic propagator is unambiguously renormalized for any
Nf, unlike in a patch theorywhere one finds no corrections to
the conventional jΩj=jqj form. This is due to the importance,
in our calculation, of the vertex correction [Fig. 1(c)]: ηg ¼
−ηω=3 at all stages in the flow, including at the fixed point.
How robust are the numerical values of our exponents to

extensions of the truncation scheme used for ΓΛ
R? The most

obvious term to include would be the bosonic mass: in our
calculation this was set to zero throughout, but it should
more properly be tracked during the flow. To include the
possibility of superconductivity in the vicinity of the
quantum critical point, analyzing the effect of four-fermion
interactions is also important. Lastly, there is the question
of whether the multiboson interaction vertices, neglected in
this treatment, remain well behaved at the fixed point. Even
if they do, we would expect them to alter the anomalous
dimensions, and in particular to give a nonzero ηk [7,8,24].
Regardless of changes to the exponents that might result

from an improved truncation scheme, a clear experimental
prediction of our work is that the Landau-damping rate is
Γq ∼ jqjα with α < 1. This should be contrasted with the
usually expected Γq ∼ jqj, which is in reality only pertur-
batively valid. This calls to mind the measurements taken
some years ago on UGe2 [31] and more recently on other
similar compounds [32], which when fitted with a jqj form
show a damping rate that does not extrapolate to zero in the
jqj → 0 limit. At least two theories have been proposed
[33,34] in which it would not be expected to. However, our
work raises an interesting alternative possibility, that the
data should be fitted with a free exponent.
UGe2, however, is not a cleanly 2D material, which

complicates the application of our theory. The properties of
the quasi-2D compound YFe2Al10 have recently been
measured [35], and may provide a closer fit. In particular,
it is reported that the Sommerfeld coefficient C=T ∼ lnT
near the quantum critical point. Our specific fixed-point
theory predicts C=T ∼ T−3=13; more generally, a T−β

behavior with β small compared to 1 appears to be an
equally good fit to the data over the temperature range
where scaling behavior was observed. Single-crystal neu-
tron-scattering data on YFe2Al10 are not yet available, but if
this material is indeed a 2D nearly ferromagnetic metal—as
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the authors of [35] claim—then we would predict Γq ∼ jqjα
with α < 1.
Finally, we discuss some of the implications of our work

for the antiferromagnetic critical point. Our analysis above
sheds some light on an unresolved issue in the paper by
Lee, Strack, and Sachdev, viz. why zb ¼ zf. The fact that
the scaling of the bosonic self-energy is fully determined by
the low-frequency expansion of the particle-hole bubble
enforces zb ¼ zf at the antiferromagnetic fixed point. This
is a trivial variation of our argument above that zb ¼ 2zf in
the ferromagnetic case. In the antiferromagnetic case, the
fixed point presented in [23] is for Nf ¼ 1 while the
diagrammatics are valid for Nf ≫ 1, so we cannot directly
assess whether they agree or not. The extension of the
antiferromagnetic FRG analysis to the Nf ≫ 1 case will
result in changes to the anomalous dimensions at the fixed
point; this would provide a useful benchmark of FRG
analysis against other methods.
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