14 research outputs found

    Novel Doppler approach to monitoring driver drowsiness

    No full text

    EEG-based Hypo-vigilance detection using convolutional neural network

    Get PDF
    National audienceHypo-vigilance detection is becoming an important active research areas in the biomedical signal processing field. For this purpose, electroencephalogram (EEG) is one of the most common modalities in drowsiness and awakeness detection. In this context, we propose a new EEG classification method for detecting fatigue state. Our method makes use of a and awakeness detection. In this context, we propose a new EEG classification method for detecting fatigue state. Our method makes use of a Convolutional Neural Network (CNN) architecture. We define an experimental protocol using the Emotiv EPOC+ headset. After that, we evaluate our proposed method on a recorded and annotated dataset. The reported results demonstrate high detection accuracy (93%) and indicate that the proposed method is an efficient alternative for hypo-vigilance detection as compared with other methods

    Sleep Deprivation Detection for Real-Time Driver Monitoring using Deep Learning

    No full text
    International audienceWe propose a non-invasive method to detect sleep deprivation by evaluating a short video sequence of a subject. Computer Vision techniques are used to crop the face from every frame and classify it (within a Deep Learning framework) into two classes: " rested " or " sleep deprived ". The system has been trained on a database of subjects recorded under severe sleep deprivation conditions. A prototype has been implemented in a low-cost Android device proving its viability for real-time driver monitoring applications. Tests on real world data have been carried out and show encouraging performances but also reveal the need of larger datasets for training
    corecore