41 research outputs found
First atom lifetime and scattering length measurements
The results of a search for hydrogen-like atoms consisting of
mesons are presented. Evidence for atom production
by 24 GeV/c protons from CERN PS interacting with a nickel target has been seen
in terms of characteristic pairs from their breakup in the same target
() and from Coulomb final state interaction (). Using
these results the analysis yields a first value for the atom lifetime
of fs and a first model-independent measurement of
the S-wave isospin-odd scattering length
( for isospin ).Comment: 14 pages, 8 figure
ΠΠΠΠ ΠΠΠΠΠΠ«Π ΠΠ’ΠΠ ΠΠΠΠΠΠ₯
Neurogenic pulmonary edema is one of the complications of acute cerebral diseases and traumas and it is accompanied by severe respiratory failure. It is associated with a high mortality level. There are several theories about neurogenic pulmonary edema development. The theory of the double hit is the most recent causing significant discussion. The theory is based on the pulmonary injury due to systemic inflammatory response when the glial tissue of the injured brain becomes the source of inflammatory mediators. A similar pathogenesis allows considering neurogenic pulmonary edema to be one of the forms of acute respiratory distress syndrome. It has diagnostic criteria common with acute respiratory distress syndrome, which are identified during acute cerebral injury and not associated with the other etiological factors. Currently, there are no effective prevention and treatment of neurogenic pulmonary edema. Support of respiratory exchange through artificial pulmonary ventilation is a major tool used for its management, which is recommended to be performed in compliance with protective ventilation principles. And some particular approaches of the preventive ventilation can be applied only with neuromonitoring.Β ΠΠ΅ΠΉΡΠΎΠ³Π΅Π½Π½ΡΠΉ ΠΎΡΠ΅ΠΊ Π»Π΅Π³ΠΊΠΈΡ
(ΠΠΠ) ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠΉ ΠΎΡΡΡΡΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΈ ΡΡΠ°Π²ΠΌ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° (ΠΠ) ΠΈ ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°Π΅ΡΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ΠΌ ΡΡΠΆΠ΅Π»ΠΎΠΉ Π΄ΡΡ
Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΠΈ. ΠΠ³ΠΎ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ ΡΠ²ΡΠ·Π°Π½ΠΎ Ρ Π²ΡΡΠΎΠΊΠΈΠΌ ΡΡΠΎΠ²Π½Π΅ΠΌ Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΡΡΠΈ. Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ΅ΠΎΡΠΈΠΉ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΠΠ. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈ ΠΎΠ±ΡΡΠΆΠ΄Π°Π΅ΠΌΠΎΠΉ ΡΡΠ΅Π΄ΠΈ Π½ΠΈΡ
ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅ΠΎΡΠΈΡ Β«Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΡΠ΄Π°ΡΠ°Β». Π Π΅Π΅ ΠΎΡΠ½ΠΎΠ²Π΅ Π»Π΅ΠΆΠΈΡ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ Π»Π΅Π³ΠΊΠΈΡ
Π·Π° ΡΡΠ΅Ρ ΡΠΈΡΡΠ΅ΠΌΠ½ΠΎΠΉ Π²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅Π°ΠΊΡΠΈΠΈ, ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠΌ ΠΌΠ΅Π΄ΠΈΠ°ΡΠΎΡΠΎΠ² Π²ΠΎΡΠΏΠ°Π»Π΅Π½ΠΈΡ Π΄Π»Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ Π³Π»ΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΊΠ°Π½Ρ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΠ. Π‘Ρ
ΠΎΠ΄ΡΡΠ²ΠΎ ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅Π·Π° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΠΠΠ ΠΊΠ°ΠΊ ΠΎΠ΄Π½Ρ ΠΈΠ· ΡΠΎΡΠΌ ΠΎΡΡΡΠΎΠ³ΠΎ ΡΠ΅ΡΠΏΠΈΡΠ°ΡΠΎΡΠ½ΠΎΠ³ΠΎ Π΄ΠΈΡΡΡΠ΅ΡΡ-ΡΠΈΠ½Π΄ΡΠΎΠΌΠ° (ΠΠ ΠΠ‘). ΠΠ»Ρ Π΅Π³ΠΎ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΎΠ±ΡΠΈΠ΅ Ρ ΠΠ ΠΠ‘ ΠΊΡΠΈΡΠ΅ΡΠΈΠΈ, Π²ΡΡΠ²Π»ΡΠ΅ΠΌΡΠ΅ Π½Π° ΡΠΎΠ½Π΅ ΠΎΡΡΡΠΎΠ³ΠΎ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡ ΠΠ ΠΈ Π½Π΅ ΠΈΠΌΠ΅ΡΡΠΈΠ΅ ΡΠ²ΡΠ·ΠΈ Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΡΡΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠ°ΠΊΡΠΎΡΠ°ΠΌΠΈ. ΠΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ
ΠΌΠ΅Ρ ΠΏΡΠΎΡΠΈΠ»Π°ΠΊΡΠΈΠΊΠΈ ΠΈ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΠΠ Π² Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ Π½Π΅ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½ΠΎ. ΠΠ΅Π΄ΡΡΠ΅Π΅ ΠΌΠ΅ΡΡΠΎ Π² Π΅Π³ΠΎ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ Π·Π°Π½ΠΈΠΌΠ°Π΅Ρ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π³Π°Π·ΠΎΠΎΠ±ΠΌΠ΅Π½Π° Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ Π²Π΅Π½ΡΠΈΠ»ΡΡΠΈΠΈ Π»Π΅Π³ΠΊΠΈΡ
, ΠΊΠΎΡΠΎΡΡΡ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠ΅ΡΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ°ΠΌΠΈ ΠΏΡΠΎΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ Π²Π΅Π½ΡΠΈΠ»ΡΡΠΈΠΈ. ΠΡΠΈ ΡΡΠΎΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π΅Π΅ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΎΠ² Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠ»ΡΠΊΠΎ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π½Π΅ΠΉΡΠΎΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π°.
Investigation of pairs in the effective mass region near
The DIRAC experiment at CERN investigated in the reaction
the particle pairs and with relative momentum in the pair system less than 100 MeV/c.
Because of background influence studies, DIRAC explored three subsamples of
pairs, obtained by subtracting -- using time-of-flight (TOF) technique
-- background from initial distributions with sample fractions
more than 70\%, 50\% and 30\%. The corresponding pair distributions in and
in its longitudinal projection were analyzed first in a Coulomb model,
which takes into account only Coulomb final state interaction (FSI) and
assuming point-like pair production. This Coulomb model analysis leads to a
yield increase of about four at MeV/c compared to 100 MeV/c.
In order to study contributions from strong interaction, a second more
sophisticated model was applied, considering besides Coulomb FSI also strong
FSI via the resonances and and a variable distance
between the produced mesons. This analysis was based on three different
parameter sets for the pair production. For the 70\% subsample and with best
parameters, pairs was found to be compared to extracted by means of the Coulomb model. Knowing the efficiency
of the TOF cut for background suppression, the total number of detected
pairs was evaluated to be around , which agrees with
the result from the 30\% subsample. The pair number in the 50\%
subsample differs from the two other values by about three standard deviations,
confirming -- as discussed in the paper -- that experimental data in this
subsample is less reliable
Evidence for -atoms with DIRAC
We present evidence for the first observation of electromagnetically bound
-pairs (-atoms) with the DIRAC experiment at the CERN-PS.
The -atoms are produced by the 24 GeV/c proton beam in a thin Pt-target
and the and -mesons from the atom dissociation are analyzed in
a two-arm magnetic spectrometer. The observed enhancement at low relative
momentum corresponds to the production of 173 54 -atoms. The mean
life of -atoms is related to the s-wave -scattering lengths, the
measurement of which is the goal of the experiment. From these first data we
derive a lower limit for the mean life of 0.8 fs at 90% confidence level.Comment: 15 pages, 9 figure
ΠΠΠΠΠΠΠΠΠΠΠΠ‘Π’Π¬ ΠΠΠ’ΠΠ ΠΠΠΠ Π£Π‘ΠΠΠ ΠΠΠ€ΠΠΠ¦ΠΠΠ Π ΠΠ‘ΠΠΠΠΠΠΠ‘Π’Π Π¦ΠΠ ΠΠ£ΠΠ―Π¦ΠΠ ΠΠΠΠΠΠΠΠΠΠΠΠΠ’ΠΠ«Π₯ ΠΠΠ’ΠΠ ΠΠΠΠ Π£Π‘ΠΠ ΠΠ ΠΠΠΠΠ’ΠΠ Π«Π₯ Π’ΠΠ Π ΠΠ’ΠΠ ΠΠ―Π₯ Π ΠΠ‘Π‘ΠΠ Π 2017 ΠΠΠΠ£
Aim: Characteristics of enterovirus infection morbidity and study of peculiarities of enterovirus circulation on some territories of Russia in 2017. Materials and methods: We investigated more than 5000 samples from the patients with enterovirus infection. The isolation and identification of enteroviruses were conducted by virological method and by partial sequencing of the genome region VP1. Phylogenic trees were constructed according to the method of Bayesian Monte Carlo Markov Chain. Results: Epidemic process and clinical picture of enterovirus infection were not the same on different territories. Peculiarities of the circulation of different types of enteroviruses on the territories were also different. In Saratov region 65% of cases were represented by enterovirus meningitis. In Murmansk region and in the Komi Republic enterovirus infection with exanthema prevailed, 95% and 60% correspondingly. In Saratov region enterovirus ECHO18 was the etiological agent of enterovirus meningitis. In Murmansk region and in the Komi Republic the cases were connected mainly with Coxsackieviruses A6. The strains of enterovirus ECHO18 were distributed to three clusters. The strains which provoked enterovirus meningitis in Saratov region belonged to cluster 3, they were formed separately from other strains of this enterovirus type and differed from the stains of ECHO18 which circulated in the North-West of Russia. The strains of Coxsackieviruses A6 identified in the North-West of Russia belonged to three sub-genotypes 5, 6, 8 of pandemic genotype of CoxsackievirusesA6. The majority of the strains belonged to sub-genotypes 6 and 8 which in 2017 dominated in the structure of Coxsackieviruses A6 in the North-West of Russia and in Russia. Conclusion: Epidemic peaks of enterovirus infection represented by different clinical forms of the disease were provoked by different types of enteroviruses. Enterovirus ECHO18 was the etiological agent of enterovirus meningitis. The main etiological factors of enterovirus infection with exanthema were Coxsackieviruses A6 of different sub-genotypes.Π¦Π΅Π»Ρ: Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π΅ΠΌΠΎΡΡΠΈ ΡΠ½ΡΠ΅ΡΠΎΠ²ΠΈΡΡΡΠ½ΠΎΠΉ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠ΅ΠΉ ΠΈ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΡΠΈΡΠΊΡΠ»ΡΡΠΈΠΈ Π½Π΅ΠΏΠΎΠ»ΠΈΠΎΠΌΠΈΠ΅Π»ΠΈΡΠ½ΡΡ
ΡΠ½ΡΠ΅ΡΠΎΠ²ΠΈΡΡΡΠΎΠ² Π½Π° ΡΡΠ΄Π΅ ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΉ Π ΠΎΡΡΠΈΠΈ Π² 2017 Π³. ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ: ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΎ Π±ΠΎΠ»Π΅Π΅ 5000 ΠΏΡΠΎΠ± ΡΠ΅ΠΊΠ°Π»ΠΈΠΉ ΠΎΡ Π±ΠΎΠ»ΡΠ½ΡΡ
ΡΠ½ΡΠ΅ΡΠΎΠ²ΠΈΡΡΡΠ½ΠΎΠΉ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠ΅ΠΉ. ΠΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΡΠ½ΡΠ΅ΡΠΎΠ²ΠΈΡΡΡΠΎΠ² ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π²ΠΈΡΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΈ ΠΏΡΡΡΠΌ ΡΠ°ΡΡΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΠ±Π»Π°ΡΡΠΈ Π³Π΅Π½ΠΎΠΌΠ° VP1. Π€ΠΈΠ»ΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π΄Π΅ΡΠ΅Π²ΡΡ Π±ΡΠ»ΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Bayesian Monte Carlo Markov Chain. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ: ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠΏΠΈΠ΄Π΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΈ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΡΠ½ΡΠ΅ΡΠΎΠ²ΠΈΡΡΡΠ½ΠΎΠΉ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ Π½Π° ΡΠ°Π·Π½ΡΡ
ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΡΡ
ΠΎΡΠ»ΠΈΡΠ°Π»ΠΈΡΡ. ΠΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΠΈΡΠΊΡΠ»ΡΡΠΈΠΈ ΡΠ½ΡΠ΅ΡΠΎΠ²ΠΈΡΡΡΠΎΠ² ΡΠ°Π·Π½ΡΡ
ΡΠΈΠΏΠΎΠ² Π½Π° ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΡΡ
ΡΠ°ΠΊΠΆΠ΅ Π±ΡΠ»ΠΈ ΡΠ°Π·Π½ΡΠΌΠΈ. Π Π‘Π°ΡΠ°ΡΠΎΠ²ΡΠΊΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ 65% Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ Π±ΡΠ»ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ½ΡΠ΅ΡΠΎΠ²ΠΈΡΡΡΠ½ΡΠΌ ΠΌΠ΅Π½ΠΈΠ½Π³ΠΈΡΠΎΠΌ. Π ΠΡΡΠΌΠ°Π½ΡΠΊΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΈ Π² Π Π΅ΡΠΏΡΠ±Π»ΠΈΠΊΠ΅ ΠΠΎΠΌΠΈ ΠΏΡΠ΅ΠΎΠ±Π»Π°Π΄Π°Π»ΠΈ ΡΠΊΠ·Π°Π½ΡΠ΅ΠΌΠ½ΡΠ΅ ΡΠΎΡΠΌΡ ΡΠ½ΡΠ΅ΡΠΎΠ²ΠΈΡΡΡΠ½ΠΎΠΉ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ, ΡΠΎΡΡΠ°Π²ΠΈΠ²ΡΠΈΠ΅ 95% ΠΈ 60% ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. Π Π‘Π°ΡΠ°ΡΠΎΠ²ΡΠΊΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ ΡΡΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠ°ΠΊΡΠΎΡΠΎΠΌ ΡΠ½ΡΠ΅ΡΠΎΠ²ΠΈΡΡΡΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Π½ΠΈΠ½Π³ΠΈΡΠ° ΠΎΠΊΠ°Π·Π°Π»ΡΡ ΡΠ½ΡΠ΅ΡΠΎΠ²ΠΈΡΡΡ ΠΠ‘ΠΠ 18. Π ΠΡΡΠΌΠ°Π½ΡΠΊΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΈ Π² Π Π΅ΡΠΏΡΠ±Π»ΠΈΠΊΠ΅ ΠΠΎΠΌΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡ Π±ΡΠ»ΠΈ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Ρ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ Coxsackievirus Π6. Π¨ΡΠ°ΠΌΠΌΡ ΡΠ½ΡΠ΅ΡΠΎΠ²ΠΈΡΡΡΠ° ΠΠ‘ΠΠ 18 ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΠ»ΠΈΡΡ ΠΏΠΎ ΡΡΠ΅ΠΌ ΠΊΠ»Π°ΡΡΠ΅ΡΠ°ΠΌ. Π¨ΡΠ°ΠΌΠΌΡ, ΠΎΠ±ΡΡΠ»ΠΎΠ²ΠΈΠ²ΡΠΈΠ΅ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡ ΡΠ½ΡΠ΅ΡΠΎΠ²ΠΈΡΡΡΠ½ΡΠΌ ΠΌΠ΅Π½ΠΈΠ½Π³ΠΈΡΠΎΠΌ Π² Π‘Π°ΡΠ°ΡΠΎΠ²ΡΠΊΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ, Π²ΠΎΡΠ»ΠΈ Π² ΠΊΠ»Π°ΡΡΠ΅Ρ 3, ΠΎΠ½ΠΈ ΡΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π»ΠΈΡΡ ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎ ΠΎΡ ΡΡΠ°ΠΌΠΌΠΎΠ² ΡΡΠΎΠ³ΠΎ ΡΠΈΠΏΠ° Π²ΠΈΡΡΡΠ° ΠΈ ΠΎΡΠ»ΠΈΡΠ°Π»ΠΈΡΡ ΠΎΡ ΡΡΠ°ΠΌΠΌΠΎΠ² ΠΠ‘ΠΠ18, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΈΡΠΊΡΠ»ΠΈΡΠΎΠ²Π°Π»ΠΈ Π½Π° ΡΠ΅Π²Π΅ΡΠΎ-Π·Π°ΠΏΠ°Π΄Π΅ Π ΠΎΡΡΠΈΠΈ. Π¨ΡΠ°ΠΌΠΌΡ Π²ΠΈΡΡΡΠ° Coxsackievirus Π6, ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ Π½Π° ΡΠ΅Π²Π΅ΡΠΎ-Π·Π°ΠΏΠ°Π΄Π΅ Π ΠΎΡΡΠΈΠΈ, ΠΎΡΠ½ΠΎΡΠΈΠ»ΠΈΡΡ ΠΊ ΡΡΠ΅ΠΌ ΡΡΠ±Π³Π΅Π½ΠΎΡΠΈΠΏΠ°ΠΌ ΠΏΠ°Π½Π΄Π΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π³Π΅Π½ΠΎΡΠΈΠΏΠ° Π²ΠΈΡΡΡΠ° Coxsackievirus Π6 β 5, 6 ΠΈ 8. ΠΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²ΠΎ ΡΡΠ°ΠΌΠΌΠΎΠ² ΠΎΡΠ½ΠΎΡΠΈΠ»ΠΈΡΡ ΠΊ ΡΡΠ±Π³Π΅Π½ΠΎΡΠΈΠΏΠ°ΠΌ 6 ΠΈ 8, ΠΊΠΎΡΠΎΡΡΠ΅ Π² 2017 Π³. Π΄ΠΎΠΌΠΈΠ½ΠΈΡΠΎΠ²Π°Π»ΠΈ Π² ΡΡΡΡΠΊΡΡΡΠ΅ Coxsackieviruses Π6 Π½Π° ΡΠ΅Π²Π΅ΡΠΎ-Π·Π°ΠΏΠ°Π΄Π΅ Π ΠΎΡΡΠΈΠΈ ΠΈ Π² Π ΠΎΡΡΠΈΠΉΡΠΊΠΎΠΉ Π€Π΅Π΄Π΅ΡΠ°ΡΠΈΠΈ Π² ΡΠ΅Π»ΠΎΠΌ. ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅: ΡΠΏΠΈΠ΄Π΅ΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΠ΄ΡΠ΅ΠΌΡ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π΅ΠΌΠΎΡΡΠΈ ΡΠ½ΡΠ΅ΡΠΎΠ²ΠΈΡΡΡΠ½ΠΎΠΉ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠ΅ΠΉ, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΠΎΠΉ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠΎΡΠΌΠ°ΠΌΠΈ, Π±ΡΠ»ΠΈ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Ρ ΡΠ°Π·Π½ΡΠΌΠΈ ΡΠΈΠΏΠ°ΠΌΠΈ ΡΠ½ΡΠ΅ΡΠΎΠ²ΠΈΡΡΡΠΎΠ². ΠΡΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌ Π°Π³Π΅Π½ΡΠΎΠΌ ΡΠ½ΡΠ΅ΡΠΎΠ²ΠΈΡΡΡΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Π½ΠΈΠ½Π³ΠΈΡΠ° Π±ΡΠ»ΠΈ ΡΠ½ΡΠ΅ΡΠΎΠ²ΠΈΡΡΡΡ ΠΠ‘ΠΠ 18. ΠΡΠ½ΠΎΠ²Π½ΡΠΌ ΡΡΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠ°ΠΊΡΠΎΡΠΎΠΌ ΡΠΊΠ·Π°Π½ΡΠ΅ΠΌΠ½ΡΡ
ΡΠΎΡΠΌ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡ Π±ΡΠ»ΠΈ Coxsackieviruses A6 ΡΠ°Π·Π½ΡΡ
ΡΡΠ±Π³Π΅Π½ΠΎΡΠΈΠΏΠΎΠ²
Sarcomas of the cervix uteri (a review of literature)
The review of literature describes the etiology and clinical features of sarcomas of the cervix uteri and current approaches to their diagnosis and treatment
NEUROGENIC PULMONARY EDEMA
Neurogenic pulmonary edema is one of the complications of acute cerebral diseases and traumas and it is accompanied by severe respiratory failure. It is associated with a high mortality level. There are several theories about neurogenic pulmonary edema development. The theory of the double hit is the most recent causing significant discussion. The theory is based on the pulmonary injury due to systemic inflammatory response when the glial tissue of the injured brain becomes the source of inflammatory mediators. A similar pathogenesis allows considering neurogenic pulmonary edema to be one of the forms of acute respiratory distress syndrome. It has diagnostic criteria common with acute respiratory distress syndrome, which are identified during acute cerebral injury and not associated with the other etiological factors. Currently, there are no effective prevention and treatment of neurogenic pulmonary edema. Support of respiratory exchange through artificial pulmonary ventilation is a major tool used for its management, which is recommended to be performed in compliance with protective ventilation principles. And some particular approaches of the preventive ventilation can be applied only with neuromonitoring
Epidemiological Characteristics of Meningococcal Infection in Moscow
Aims. The purpose of this study was to identify current epidemiological features of meningococcal infection in Moscow.Materials and methods. Cases of invasive meningococcal disease in Moscow from 2014 to 2018 and the biomaterial from patients with an invasive meningococcal disease were analyzed.Results. The features of the epidemic process of meningococcal disease in Moscow were revealed: increasing in the incidence rate involving teenagers and young adults into the epidemic process; meningococcal strains of serogroups W and A increased in the etiology of the invasive meningococcal disease; high mortality rate.Conclusions. It seems reasonable to recommend vaccination against meningococcal disease by including adolescents, young adults and persons over 65 years old