420 research outputs found

    Porous Silicon Photonic Crystal as a Substrate for High Efficiency Biosensing

    Get PDF
    Photonic crystals offer great possibilities for the improvement of performance of different kinds of devices. Due to the ability to control the light propagation and to change optical properties via interaction with the media photonic crystals have been widely used to increase the sensitivity of biosensing in many experimental setups. Among them some of the most interesting for practical applications are one-dimensional porous silicon photonic crystals. They could be easily fabricated, have big surface area, high sorption abilities, and have been shown to be able to change the emission of embedded luminophores. In this study we have fabricatedand performed the comprehensive investigation of the properties of hybrid system consisting of the porous silicon one-dimensional photonic crystals embedded with semiconductor quantum dots as the luminophores. We have demonstrated the ability of these systems to enhance the photoluminescence of luminophores and serve as the substrate for the high efficient biosensing. Keywords: Porous silicon, microcavity, quantum dots, luminescence enhancemen

    Modeling and Optimization of the Porous Silicon Photonic Structures

    Get PDF
    Photonic crystals and optical devices based on them are of great interest nowadays and are widely used in photonics, optoelectronics, and biosensing. One of the most practically using materials to fabricate one-dimensional photonic crystal is porous silicon due to the simple fabrication process, high porosity and ability to select precisely the refractive index by controlling the porosity. It has already been shown as the suitable material to be used as an element of many photonic devices including gas sensors and biosensors. However, because of the complicated porous structure, and silicon oxidation, occurring at the atmosphere conditions, optical properties of porous silicon photonic structures need to be stabilized by preventive oxidation. In order to predict eventual optical properties of fabricated photonic structures an adequate modeling should be performed. In our study we have developed a calculation model based on the combination of effective media approximations and transfer matrix method, which could precisely predict the reflection, transmission of the porous silicon photonic structures taking into account the dispersion of the refractive index of silicon and silicon oxide, and the oxidation degree. We also used numerical finite-difference time-domain calculations in order to investigate the luminescent properties of the lumiphores embedded into the porous photonic structure. Keywords: Porous silicon, microcavity, transfer matrix, effective media, FDT

    Laser Irradiation as a Tool to Control the Resonance Energy Transfer in Bacteriorhodopsin–Quantum Dot Bio-Nano Hybrid Material

    Get PDF
     Bacteriorhodopsin (BR) is a natural photosensitive protein which can be considered promising in photovoltaics and optoelectronics because of its ability to produce a pronounced electrochemical response and controllably change its absorption spectrum under light excitation. However, its applicability is limited by its narrow absorption spectrum and low values of the absorption cross sections. Semiconductor quantum dots (QDs), which have high one- and two-photon absorption cross-sections in a UVand NIR spectral regions, respectively, can significantly improve the light sensitivity of BR by means of Förster resonance energy transfer (FRET) from QD to BR. In this work, we demonstrate the possibility to control the efficiency of FRET from QD to BR within electrostatically bound complexes of QD and purple membranes (PM) containing BR. We show that laser irradiation of QDs at different wavelengths leads to distinct changes (rise or decrease) of QD luminescence quantum yield (QY) without changing of QD structure. Such photo-induced changes in the QY of QD lead to a corresponding change in the efficiency of FRET. We have estimated efficiencies of FRET from QD to BR in the PM complexes composed of irradiated and non-irradiated QDs and found the increase in FRET efficiency with irradiated QDs

    Influence of the photon - neutrino processes on magnetar cooling

    Full text link
    The photon-neutrino processes γe±e±ννˉ\gamma e^{\pm} \to e^{\pm} \nu \bar \nu, γννˉ\gamma \to \nu \bar \nu and γγννˉ\gamma \gamma \to \nu \bar \nu are investigated in the presence of a strongly magnetized and dense electron-positron plasma. The amplitudes of the reactions γe±e±ννˉ\gamma e^{\pm} \to e^{\pm} \nu \bar \nu and γγννˉ\gamma \gamma \to \nu \bar \nu are obtained. In the case of a cold degenerate plasma contributions of the considering processes to neutrino emissivity are calculated. It is shown that contribution of the process γγννˉ\gamma \gamma \to \nu \bar \nu to neutrino emissivity is supressed in comparision with the contributions of the processes γe±e±ννˉ\gamma e^{\pm} \to e^{\pm} \nu \bar \nu and γννˉ\gamma \to \nu \bar \nu. The constraint on the magnetic field strength in the magnetar outer crust is obtained.Comment: 8 pages, LaTeX, 2 PS figures, based on the talk presented by D.A. Rumyantsev at the XV International Seminar Quarks'2008, Sergiev Posad, Moscow Region, May 23-29, 2008, to appear in the Proceeding

    Achieving high visibility in subcarrier wave quantum key distribution system

    Get PDF
    We study influence of quantum signal polarization distortions in the optical fiber on the interference pattern visibility in a subcarrier wave quantum key distribution system. An optical scheme of the polarization compensation unit is suggested, and dynamics of the QBER depending on the unit architecture is explored

    Mathematical description and calculation of contact melting

    Get PDF
    Heat- and mass-transfer processes are investigated in the contact melting of solids with large specific loads and energy rates appropriate to conditions of thermal drilling. © 1985 Plenum Publishing Corporation
    corecore