1,367 research outputs found

    Double-exciton component of the cyclotron spin-flip mode in a quantum Hall ferromagnet

    Full text link
    We report on the calculation of the cyclotron spin-flip excitation (CSFE) in a spin-polarized quantum Hall system at unit filling. This mode has a double-exciton component which contributes to the CSFE correlation energy but can not be found by means of a mean field approach. The result is compared with available experimental data.Comment: 9 pages, 2 figure

    Ideal switching effect in periodic spin-orbit coupling structures

    Full text link
    An ideal switching effect is discovered in a semiconductor nanowire with a spatially-periodic Rashba structure. Bistable `ON' and `OFF' states can be realized by tuning the gate voltage applied on the Rashba regions. The energy range and position of `OFF' states can be manipulated effectively by varying the strength of the spin-orbit coupling (SOC) and the unit length of the periodic structure, respectively. The switching effect of the nanowire is found to be tolerant of small random fluctuations of SOC strength in the periodic structure. This ideal switching effect might be applicable in future spintronic devices.Comment: 4 pages and 4 figure

    Quantum transport in a curved one-dimensional quantum wire with spin-orbit interactions

    Full text link
    The one-dimensional effective Hamiltonian for a planar curvilinear quantum wire with arbitrary shape is proposed in the presence of the Rashba spin-orbit interaction. Single electron propagation through a device of two straight lines conjugated with an arc has been investigated and the analytic expressions of the reflection and transmission probabilities have been derived. The effects of the device geometry and the spin-orbit coupling strength α\alpha on the reflection and transmission probabilities and the conductance are investigated in the case of spin polarized electron incidence. We find that no spin-flip exists in the reflection of the first junction. The reflection probabilities are mainly influenced by the arc angle and the radius, while the transmission probabilities are affected by both spin-orbit coupling and the device geometry. The probabilities and the conductance take the general behavior of oscillation versus the device geometry parameters and α\alpha . Especially the electron transportation varies periodically versus the arc angle θw\theta_{w}. We also investigate the relationship between the conductance and the electron energy, and find that electron resonant transmission occurs for certain energy. Finally, the electron transmission for the incoming electron with arbitrary state is considered. For the outgoing electron, the polarization ratio is obtained and the effects of the incoming electron state are discussed. We find that the outgoing electron state can be spin polarization and reveal the polarized conditions.Comment: 7 pages, 8 figure

    Spin states and persistent currents in a mesoscopic ring with an embedded magnetic impurity

    Full text link
    Spin states and persistent currents are investigated theoretically in a mesoscopic ring with an embedded magnetic ion under a uniform magnetic field including the spin-orbit interactions. The magnetic impurity acts as a spin-dependent δ\delta-potential for electrons and results in gaps in the energy spectrum, consequently suppresses the oscillation of the persistent currents. The competition between the Zeeman splittings and the ss-dd exchange interaction leads to a transition of the electron ground state in the ring. The interplay between the periodic potential induced by the Rashba and Dresselhaus spin-orbit interactions and the δ\delta-potential induced by the magnetic impurity leads to significant variation in the energy spectrum, charge density distribution, and persistent currents of electrons in the ring.Comment: 8 pages, 11 figure

    Spin Hall effect in a Kagome lattice driven by Rashba spin-orbit interaction

    Full text link
    Using four-terminal Landauer-B\"{u}ttiker formalism and Green's function technique, in this present paper, we calculate numerically spin Hall conductance (SHC) and longitudinal conductance of a finite size kagome lattice with Rashba spin-orbit (SO) interaction both in presence and absence of external magnetic flux in clean limit. In the absence of magnetic flux, we observe that depending on the Fermi surface topology of the system SHC changes its sign at different values of Fermi energy, along with the band center. Unlike the infinite system (where SHC is a universal constant ±e8π\pm \frac{e}{8 \pi}), here SHC depends on the external parameters like SO coupling strength, Fermi energy, etc. We show that in the presence of any arbitrary magnetic flux, periodicity of the system is lost and the features of SHC tends to get reduced because of elastic scattering. But again at some typical values of flux ($\phi=1/2, 1/4, 3/4..., etc.) the system retains its periodicity depending on its size and the features of spin Hall effect (SHE) reappears. Our predicted results may be useful in providing a deeper insight into the experimental realization of SHE in such geometries.Comment: 10 pages, 10 figure

    Spin-orbit-induced correlations of the local density of states in two-dimensional electron gas

    Full text link
    We study the local density of states (LDOS) of two-dimensional electrons in the presence of spin-orbit (SO) coupling. Although SO coupling has no effect on the average density of states, it manifests itself in the correlations of the LDOS. Namely, the correlation function acquires two satellites centered at energy difference equal to the SO splitting, 2ωSO2\omega_{SO}, of the electron Fermi surface. For a smooth disorder the satellites are well separated from the main peak. Weak Zeeman splitting ωZ≪ωSO\omega_{Z} \ll \omega_{SO} in a parallel magnetic field causes an anomaly in the shape of the satellites. We consider the effect of SO-induced satellites in the LDOS correlations on the shape of the correlation function of resonant-tunneling conductances at different source-drain biases, which can be measured experimentally. This shape is strongly sensitive to the relation between ωSO\omega_{SO} and ωZ\omega_{Z}.Comment: 10 pages, 4 figure

    Massive Spin Collective Mode in Quantum Hall Ferromagnet

    Full text link
    It is shown that the collective spin rotation of a single Skyrmion in quantum Hall ferromagnet can be regarded as precession of the entire spin texture in the external magnetic field, with an effective moment of inertia which becomes infinite in the zero g-factor limit. This low-lying spin excitation may dramatically enhance the nuclear spin relaxation rate via the hyperfine interaction in the quantum well slightly away from filling factor equal one.Comment: 4 page

    Sound and Heat Absorption by a 2D Electron Gas in an Odd-Integer Quantized-Hall Regime

    Full text link
    The absorption of bulk acoustic phonons in a two-dimensional (2D) GaAs/AlGaAs heterostructure is studied (in the clean limit) where the 2D electron-gas (2DEG), being in an odd-integer quantum-Hall state, is in fact a spin dielectric. Of the two channels of phonon absorption associated with excitation of spin waves, one, which is due to the spin-orbit (SO) coupling of electrons, involves a change of the spin state of the system and the other does not. We show that the phonon-absorption rate corresponding to the former channel (in the paper designated as the second absorption channel) is finite at zero temperature (TT), whereas that corresponding to the latter (designated as the first channel) vanishes for T→0T\to 0. The long-wavelength limit, being the special case of the first absorption channel, corresponds to sound (bulk and surface) attenuation by the 2DEG. At the same time, the ballistic phonon propagation and heat absorption are determined by both channels. The 2DEG overheat and the attendant spin-state change are found under the conditions of permanent nonequilibrium phonon pumping.Comment: 26 pages, 2 figure

    Electron spin-orbit splitting in InGaAs/InP quantum well studied by means of the weak antilocalization and spin-zero effects in tilted magnetic fields

    Full text link
    The coupling between Zeeman spin splitting and Rashba spin-orbit terms has been studied experimentally in a gated InGaAs/InP quantum well structure by means of simultaneous measurements of the weak antilocalization (WAL) effect and beating in the SdH oscillations. The strength of the Zeeman splitting was regulated by tilting the magnetic field with the spin-zeros in the SdH oscillations, which are not always present, being enhanced by the tilt. In tilted fields the spin-orbit and Zeeman splittings are not additive, and a simple expression is given for the energy levels. The Rashba parameter and the electron g-factor were extracted from the position of the spin zeros in tilted fields. A good agreement is obtained for the spin-orbit coupling strength from the spin-zeros and weak antilocalization measurements.Comment: Accepted for publication in Semiconductors Science and Technolog

    Topological defects and Goldstone excitations in domain walls between ferromagnetic quantum Hall effect liquids

    Full text link
    It is shown that the low-energy spectrum of a ferromagnetic quantum Hall effect liquid in a system with a multi-domain structure generated by an inhomogeneous bare Zeeman splitting ϵZ\epsilon_{Z} is formed by excitations localized at the walls between domains. For a step-like ϵZ(r)\epsilon_Z(r), the domain wall spectrum includes a spin-wave with a linear dispersion and a small gap due to spin-orbit coupling, and a low-energy topological defects. The latter are charged and may dominate in the transport under conditions that the percolation through the network of domain walls is provided.Comment: 4 pages, 1 fi
    • …
    corecore