183 research outputs found

    Sin in the Upanishads.

    Get PDF

    Sin in the Greek Cults.

    Get PDF

    In Answer to Mr. Evalt.

    Get PDF

    Jesus: A Symbol.

    Get PDF

    The Changing Content of Sin.

    Get PDF

    The SUMMIT trial: a field comparison of buprenorphine versus methadone maintenance treatment.

    Get PDF
    This prospective patient-preference study examined the effectiveness in practice of methadone versus buprenorphine maintenance treatment and the beliefs of subjects regarding these drugs. A total of 361 opiate-dependent individuals (89% of those eligible, presenting for treatment over 2 years at a drug service in England) received rapid titration then flexible dosing with methadone or buprenorphine; 227 patients chose methadone (63%) and 134 buprenorphine (37%). Participants choosing methadone had more severe substance abuse and psychiatric and physical problems but were more likely to remain in treatment. Survival analysis indicated those prescribed methadone were over twice as likely to be retained (hazard ratio for retention was 2.08 and 95% confidence interval [CI] = 1.49-2.94 for methadone vs. buprenorphine), However, those retained on buprenorphine were more likely to suppress illicit opiate use (odds ratio = 2.136, 95% CI = 1.509-3.027, p < .001) and achieve detoxification. Buprenorphine may also recruit more individuals to treatment because 28% of those choosing buprenorphine (10% of the total sample) stated they would not have accessed treatment with methadone

    Dryland Clovers: A Phytochemical Resource

    Get PDF
    Recent developments in the utilisation of phytoestrogens of red clover (Wuttke et al., 2002) have encouraged us to investigate a wider range of Trifolium species for metabolites which could provide new product opportunities. The phytochemistry of the agronomically-important Trifolium species white (Trifolium repens) and red (T. pratense) clovers has been investigated in some detail (Foo et al., 2000; Sivakumaran et al., 2004). However numerous other clover species have been neglected in agriculture due to agronomic issues or the fact they are annuals and require more intensive management. While some of these clover species have been studied for their genetic diversity (Marshall et al., 2002), investigations of the chemical composition of these specific species has not been reported

    Eutectic Colony Formation: A Stability Analysis

    Full text link
    Experiments have widely shown that a steady-state lamellar eutectic solidification front is destabilized on a scale much larger than the lamellar spacing by the rejection of a dilute ternary impurity and forms two-phase cells commonly referred to as `eutectic colonies'. We extend the stability analysis of Datye and Langer for a binary eutectic to include the effect of a ternary impurity. We find that the expressions for the critical onset velocity and morphological instability wavelength are analogous to those for the classic Mullins-Sekerka instability of a monophase planar interface, albeit with an effective surface tension that depends on the geometry of the lamellar interface and, non-trivially, on interlamellar diffusion. A qualitatively new aspect of this instability is the occurence of oscillatory modes due to the interplay between the destabilizing effect of the ternary impurity and the dynamical feedback of the local change in lamellar spacing on the front motion. In a transient regime, these modes lead to the formation of large scale oscillatory microstructures for which there is recent experimental evidence in a transparent organic system. Moreover, it is shown that the eutectic front dynamics on a scale larger than the lamellar spacing can be formulated as an effective monophase interface free boundary problem with a modified Gibbs-Thomson condition that is coupled to a slow evolution equation for the lamellar spacing. This formulation provides additional physical insights into the nature of the instability and a simple means to calculate an approximate stability spectrum. Finally, we investigate the influence of the ternary impurity on a short wavelength oscillatory instability that is already present at off-eutectic compositions in binary eutectics.Comment: 26 pages RevTex, 14 figures (28 EPS files); some minor changes; references adde

    Eutectic colony formation: A phase field study

    Full text link
    Eutectic two-phase cells, also known as eutectic colonies, are commonly observed during the solidification of ternary alloys when the composition is close to a binary eutectic valley. In analogy with the solidification cells formed in dilute binary alloys, colony formation is triggered by a morphological instability of a macroscopically planar eutectic solidification front due to the rejection by both solid phases of a ternary impurity that diffuses in the liquid. Here we develop a phase-field model of a binary eutectic with a dilute ternary impurity and we investigate by dynamical simulations both the initial linear regime of this instability, and the subsequent highly nonlinear evolution of the interface that leads to fully developed two-phase cells with a spacing much larger than the lamellar spacing. We find a good overall agreement with our recent linear stability analysis [M. Plapp and A. Karma, Phys. Rev. E 60, 6865 (1999)], which predicts a destabilization of the front by long-wavelength modes that may be stationary or oscillatory. A fine comparison, however, reveals that the assumption commonly attributed to Cahn that lamella grow perpendicular to the envelope of the solidification front is weakly violated in the phase-field simulations. We show that, even though weak, this violation has an important quantitative effect on the stability properties of the eutectic front. We also investigate the dynamics of fully developed colonies and find that the large-scale envelope of the composite eutectic front does not converge to a steady state, but exhibits cell elimination and tip-splitting events up to the largest times simulated.Comment: 18 pages, 18 EPS figures, RevTeX twocolumn, submitted to Phys. Rev.
    corecore