257 research outputs found

    The Bose–Hubbard model with squeezed dissipation

    Get PDF
    The stationary properties of the Bose–Hubbard model under squeezed dissipation are investigated. The dissipative model does not possess aU (1) symmetry but conserves parity. We find that 〈a j 〉 = 0 always holds, so no symmetry breaking occurs. Without the onsite repulsion, the linear case is known to be critical. At the critical point the system freezes to an EPR state with infinite two mode entanglement. We show here that the correlations are rapidly destroyed whenever the repulsion is switched on. As we increase the latter, the system approaches a thermal state with an effective temperature defined in terms of the squeezing parameter in the dissipators. We characterize this transition by means of a Gutzwiller ansatz and the Gaussian Hartree–Fock–Bogoliubov approximation

    Characterization of a detector setup for the measurement of the 235U(n,f) cross section relative to n-p scattering up to 500 MeV at the n_TOF facility at CERN

    Get PDF
    The measurement of the U-235(n,f) reaction cross section in the neutron energy region 10 MeV to 500 MeV was carried out at the CERN n_TOF facility. The experimental campaign, completed in 2018, provided precise and accurate data on the fission reaction relative to neutron -proton elastic scattering. A description and characterization of the used setup for the simultaneous measurement of fission fragments and neutron flux is reported here

    Measurement of the 241Am(n,γ) cross section at the n_TOF facility at CERN

    Get PDF
    The neutron capture cross section of Am-241 is an important quantity for nuclear energy production and fuel cycle scenarios. Several measurements have been performed in recent years with the aim to reduce existing uncertainties in evaluated data. Two previous measurements, performed at the 185 m flight-path station EARL of the neutron time-of-flight facility n_TOF at CERN, have permitted to substantially extend the resolved resonance region, but suffered in the near-thermal energy range from the unfavorable signal-to-background ratio resulting from the combination of the high radioactivity of Am-241 and the rather low thermal neutron flux. The here presented Am-241(n,gamma) measurement, performed with C6D6 liquid scintillator gamma detectors at the 20 m flight-path station EAR2 of the n_TOF facility, took advantage of the much higher neutron flux. The current status of the analysis of the data, focussed on the low-energy region, will be described here

    BNCT research activities at the Granada group and the project NeMeSis: Neutrons for medicine and sciences, towards an accelerator-based facility for new BNCT therapies, medical isotope production and other scientific neutron applications

    Get PDF
    The Granada group in BNCT research is currently performing studies on: nuclear and radiobiological data for BNCT, new boron compounds and a new design for a neutron source for BNCT and other applications, including the production of medical radioisotopes. All these activities are described in this report.Asociación Española Contra el Cáncer (AECC) PS16163811PORRSpanish MINECO FIS2015-69941-C2-1-PJunta de Andalucía P11-FQM-8229Campus of International Excellence BioTic P-BS-64Spanish Fundacion ACSAsociación Capitán AntonioLa Kuadrilla de IznallozSonriendo se Puede Gana

    Packham's Triumph Pears (Pyrus communis L.) Post-Harvest Treatment during Cold Storage Based on Chitosan and Rue Essential Oil

    Get PDF
    Pears (Pyrus communis L.) cv. Packham's Triumph are very traditional for human consumption, but pear is a highly perishable climacteric fruit with a short shelf-life affected by several diseases with a microbial origin. In this study, a protective effect on the quality properties of pears was evidenced after the surface application of chitosan-Ruta graveolens essential oil coatings (CS + RGEO) in four different concentrations (0, 0.5, 1.0 and 1.5 %, v/v) during 21 days of storage under 18 °C. After 21 days of treatment, a weight loss reduction of 10% (from 40.2 ± 5.3 to 20.3 ± 3.9) compared to the uncoated pears was evident with CS + RGEO 0.5%. All the fruits' physical-chemical properties evidenced a protective effect of the coatings. The maturity index increased for all the treatments. However, the pears with CS + RGEO 1.5% were lower (70.21) than the uncoated fruits (98.96). The loss of firmness for the uncoated samples was higher compared to the coated samples. The pears' most excellent mechanical resistance was obtained with CS + RGEO 0.5% after 21 days of storage, both for compression resistance (7.42 kPa) and force (22.7 N). Microbiological studies demonstrated the protective power of the coatings. Aerobic mesophilic bacteria and molds were significantly reduced (in 3 Log CFU/g compared to control) using 15 µL/mL of RGEO, without affecting consumer perception. The results presented in this study showed that CS + RGEO coatings are promising in the post-harvest treatment of pears
    corecore