1,361 research outputs found

    A Continuum,O(N) Monte-Carlo algorithm for charged particles

    Full text link
    We introduce a Monte-Carlo algorithm for the simulation of charged particles moving in the continuum. Electrostatic interactions are not instantaneous as in conventional approaches, but are mediated by a constrained, diffusing electric field on an interpolating lattice. We discuss the theoretical justifications of the algorithm and show that it efficiently equilibrates model polyelectrolytes and polar fluids. In order to reduce lattice artifacts that arise from the interpolation of charges to the grid we implement a local, dynamic subtraction algorithm. This dynamic scheme is completely general and can also be used with other Coulomb codes, such as multigrid based methods

    Understanding plastic deformation in thermal glasses from single-soft-spot dynamics

    Full text link
    By considering the low-frequency vibrational modes of amorphous solids, Manning and Liu [Phys. Rev. Lett. 107, 108302 (2011)] showed that a population of "soft spots" can be identified that are intimately related to plasticity at zero temperature under quasistatic shear. In this work we track individual soft spots with time in a two-dimensional sheared thermal Lennard Jones glass at temperatures ranging from deep in the glassy regime to above the glass transition temperature. We show that the lifetimes of individual soft spots are correlated with the timescale for structural relaxation. We additionally calculate the number of rearrangements required to destroy soft spots, and show that most soft spots can survive many rearrangements. Finally, we show that soft spots are robust predictors of rearrangements at temperatures well into the super-cooled regime. Altogether, these results pave the way for mesoscopic theories of plasticity of amorphous solids based on dynamical behavior of individual soft spots.Comment: 9 pages, 6 figure

    Local Simulation Algorithms for Coulombic Interactions

    Full text link
    We consider dynamically constrained Monte-Carlo dynamics and show that this leads to the generation of long ranged effective interactions. This allows us to construct a local algorithm for the simulation of charged systems without ever having to evaluate pair potentials or solve the Poisson equation. We discuss a simple implementation of a charged lattice gas as well as more elaborate off-lattice versions of the algorithm. There are analogies between our formulation of electrostatics and the bosonic Hubbard model in the phase approximation. Cluster methods developed for this model further improve the efficiency of the electrostatics algorithm.Comment: Proceedings Statphys22 10 page

    Local Molecular Dynamics with Coulombic Interaction

    Full text link
    We propose a local, O(N) molecular dynamics algorithm for the simulation of charged systems. The long ranged Coulomb potential is generated by a propagating electric field that obeys modified Maxwell equations. On coupling the electrodynamic equations to an external thermostat we show that the algorithm produces an effective Coulomb potential between particles. On annealing the electrodynamic degrees of freedom the field configuration converges to a solution of the Poisson equation much like the electronic degrees of freedom approach the ground state in ab-initio molecular dynamics.Comment: 4 pages with 3 figure

    Unified Description of Aging and Rate Effects in Yield of Glassy Solids

    Full text link
    The competing effects of slow structural relaxations (aging) and deformation at constant strain rate on the shear yield stress Ï„y\tau^y of simple model glasses are examined using molecular simulations. At long times, aging leads to a logarithmic increase in density and Ï„y\tau^y. The yield stress also rises logarithmically with rate, but shows a sharp transition in slope at a rate that decreases with increasing age. We present a simple phenomenological model that includes both intrinsic rate dependence and the change in properties with the total age of the system at yield. As predicted by the model, all data for each temperature collapse onto a universal curve.Comment: 4 pages, 3 figure

    Controlling crystal symmetries in phase-field crystal models

    Full text link
    We investigate the possibility to control the symmetry of ordered states in phase-field crystal models by tuning nonlinear resonances. In two dimensions, we find that a state of square symmetry as well as coexistence between squares and hexagons can be easily obtained. In contrast, it is delicate to obtain coexistence of squares and liquid. We develop a general method for constructing free energy functionals that exhibit solid-liquid coexistence with desired crystal symmetries. As an example, we develop a free energy functional for square-liquid coexistence in two dimensions. A systematic analysis for determining the parameters of the necessary nonlinear terms is provided. The implications of our findings for simulations of materials with simple cubic symmetry are discussed.Comment: 19 pages, 6 figure

    Jamming under tension in polymer crazes

    Full text link
    Molecular dynamics simulations are used to study a unique expanded jammed state. Tension transforms many glassy polymers from a dense glass to a network of fibrils and voids called a craze. Entanglements between polymers and interchain friction jam the system after a fixed increase in volume. As in dense jammed systems, the distribution of forces is exponential, but they are tensile rather than compressive. The broad distribution of forces has important implications for fibril breakdown and the ultimate strength of crazes.Comment: 4 pages, 4 figure

    Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements and Crazing

    Get PDF
    Large-scale molecular simulations are performed to investigate tensile failure of polymer interfaces as a function of welding time tt. Changes in the tensile stress, mode of failure and interfacial fracture energy GIG_I are correlated to changes in the interfacial entanglements as determined from Primitive Path Analysis. Bulk polymers fail through craze formation, followed by craze breakdown through chain scission. At small tt welded interfaces are not strong enough to support craze formation and fail at small strains through chain pullout at the interface. Once chains have formed an average of about one entanglement across the interface, a stable craze is formed throughout the sample. The failure stress of the craze rises with welding time and the mode of craze breakdown changes from chain pullout to chain scission as the interface approaches bulk strength. The interfacial fracture energy GIG_I is calculated by coupling the simulation results to a continuum fracture mechanics model. As in experiment, GIG_I increases as t1/2t^{1/2} before saturating at the average bulk fracture energy GbG_b. As in previous simulations of shear strength, saturation coincides with the recovery of the bulk entanglement density. Before saturation, GIG_I is proportional to the areal density of interfacial entanglements. Immiscibiltiy limits interdiffusion and thus suppresses entanglements at the interface. Even small degrees of immisciblity reduce interfacial entanglements enough that failure occurs by chain pullout and GI≪GbG_I \ll G_b

    "Wet-to-Dry" Conformational Transition of Polymer Layers Grafted to Nanoparticles in Nanocomposite

    Get PDF
    The present communication reports the first direct measurement of the conformation of a polymer corona grafted around silica nano-particles dispersed inside a nanocomposite, a matrix of the same polymer. This measurement constitutes an experimental breakthrough based on a refined combination of chemical synthesis, which permits to match the contribution of the neutron silica signal inside the composite, and the use of complementary scattering methods SANS and SAXS to extract the grafted polymer layer form factor from the inter-particles silica structure factor. The modelization of the signal of the grafted polymer on nanoparticles inside the matrix and the direct comparison with the form factor of the same particles in solution show a clear-cut change of the polymer conformation from bulk to the nanocomposite: a transition from a stretched and swollen form in solution to a Gaussian conformation in the matrix followed with a compression of a factor two of the grafted corona. In the probed range, increasing the interactions between the grafted particles (by increasing the particle volume fraction) or between the grafted and the free matrix chains (decreasing the grafted-free chain length ratio) does not influence the amplitude of the grafted brush compression. This is the first direct observation of the wet-to-dry conformational transition theoretically expected to minimize the free energy of swelling of grafted chains in interaction with free matrix chains, illustrating the competition between the mixing entropy of grafted and free chains, and the elastic deformation of the grafted chains. In addition to the experimental validation of the theoretical prediction, this result constitutes a new insight for the nderstanding of the general problem of dispersion of nanoparticles inside a polymer matrix for the design of new nanocomposites materials
    • …
    corecore