10,490 research outputs found

    Structural distortion and frustrated magnetic interactions in the layered copper oxychloride [CuCl]LaNb(2)O(7)

    Full text link
    We present a computational study of the layered copper oxychloride [CuCl]LaNb(2)O(7) that has been recently proposed as a spin-1/2 frustrated square lattice compound. Our results evidence an orbitally degenerate ground state for the reported tetragonal crystal structure and reveal a Jahn-Teller-type structural distortion. This distortion heavily changes the local environment of copper -- CuO(2)Cl(2) plaquettes are formed instead of CuO(2)Cl(4) octahedra -- and restores the single-orbital scenario typical for copper oxides and oxyhalides. The calculated distortion is consistent with the available diffraction data and the experimental results on the electric field gradients for the Cu and Cl sites. The band structure suggests a complex three-dimensional spin model with the interactions up to the fourth neighbors. Despite the layered structure of (CuCl)LaNb(2)O(7), the spin system has pronounced one-dimensional features. Yet, sizable interchain interactions lead to the strong frustration and likely cause the spin-gap behavior. Computational estimates of individual exchange couplings are in qualitative agreement with the experimental data.Comment: 13 pages, 9 figures, 3 table

    Ab initio modeling of Bose-Einstein condensation in Pb2V3O9

    Full text link
    We apply density functional theory band structure calculations and quantum Monte Carlo simulations to investigate the Bose-Einstein condensation in the spin-1/2 quantum magnet Pb2V3O9. In contrast to previous conjectures on the one-dimensional nature of this compound, we present a quasi-two-dimensional model of spin dimers with ferromagnetic and antiferromagnetic interdimer couplings. Our model is well justified microscopically and provides a consistent description of the experimental data on the magnetic susceptibility, high-field magnetization, and field vs. temperature phase diagram. The Bose-Einstein condensation in the quasi-two-dimensional spin system of Pb2V3O9 is largely governed by intralayer interactions, whereas weak interlayer couplings have a moderate effect on the ordering temperature. The proposed computational approach is an efficient tool to analyze and predict high-field properties of quantum magnets.Comment: 6 pages, 6 figures, 1 tabl

    Extensive Air Shower Radio Detection: Recent Results and Outlook

    Full text link
    A prototype system for detecting radio pulses associated with extensive cosmic ray air showers is described. Sensitivity is compared with that in previous experiments, and lessons are noted for future studies.Comment: 17 pages, LaTeX, 7 figures, invited talk presented by J. Rosner at RADHEP-2000 Conference, UCLA, Nov. 16-18, 2000, Proceedings published by AIP. Some figures and text changed; one reference update

    Microscopic model of (CuCl)LaNb2O7: coupled spin dimers replace a frustrated square lattice

    Full text link
    We present a microscopic model of the spin-gap quantum magnet (CuCl)LaNb2O7 that was previously suggested as a realization of the spin-1/2 frustrated square lattice. Taking advantage of the precise atomic positions from recent crystal structure refinement, we evaluate individual exchange integrals and construct a minimum model that naturally explains all the available experimental data. Surprisingly, the deviation from tetragonal symmetry leads to the formation of spin dimers between fourth neighbors due to a Cu-Cl-Cl-Cu pathway with a leading antiferromagnetic exchange J4 ~ 25 K. The total interdimer exchange amounts to 12 - 15 K. Our model is in agreement with inelastic neutron scattering results and is further confirmed by quantum Monte-Carlo simulations of the magnetic susceptibility and the high-field magnetization. Our results establish (CuCl)LaNb2O7 as a non-frustrated system of coupled spin dimers with predominant antiferromagnetic interactions and provide a general perspective for related materials with unusual low-temperature magnetic properties.Comment: 4 pages, 4 figures, 1 table + supplementar

    The Effect of Ru substitution for Ni on the superconductivity in MgCNi3-xRux

    Full text link
    The superconductor MgCNi3 has been chemically doped by partial substitution of Ru for Ni in the solid solution MgCNi3-xRux for 0<x<0.5. Magnetic and specific heat measurements show that the Sommerfeld parameter (gamma_exp) and TC decrease immediately on Ru substitution, but that a TC above 2K is maintained even for a relatively large decrease in gamma_exp. Ferromagnetism is not observed to develop through Ru substitution, and the normal state magnetic susceptibility is suppressed.Comment: 18 pages, 13 figure

    Comparisons of rational engineering correlations of thermophoretically-augmented particle mass transfer with STAN5-predictions for developing boundary layers

    Get PDF
    Modification of the code STAN5 to properly include thermophoretic mass transport, and examination of selected test cases developing boundary layers which include variable properties, viscous dissipation, transition to turbulence and transpiration cooling. Under conditions representative of current and projected GT operation, local application of St(M)/St(M),o correlations evidently provides accurate and economical engineering design predictions, especially for suspended particles characterized by Schmidt numbers outside of the heavy vapor range

    On the miscible Rayleigh-Taylor instability: two and three dimensions

    Get PDF
    We investigate the miscible Rayleigh-Taylor (RT) instability in both 2 and 3 dimensions using direct numerical simulations, where the working fluid is assumed incompressible under the Boussinesq approximation. We first consider the case of randomly perturbed interfaces. With a variety of diagnostics, we develop a physical picture for the detailed temporal development of the mixed layer: We identify three distinct evolutionary phases in the development of the mixed layer, which can be related to detailed variations in the growth of the mixing zone. Our analysis provides an explanation for the observed differences between two and three-dimensional RT instability; the analysis also leads us to concentrate on the RT models which (1) work equally well for both laminar and turbulent flows, and (2) do not depend on turbulent scaling within the mixing layer between fluids. These candidate RT models are based on point sources within bubbles (or plumes) and interaction with each other (or the background flow). With this motivation, we examine the evolution of single plumes, and relate our numerical results (of single plumes) to a simple analytical model for plume evolution.Comment: 31 pages, 27 figures, to appear in November issue of JFM, 2001. For better figures: http://astro.uchicago.edu/~young/ps/jfmtry08.ps.

    Uniform spin chain physics arising from NCN bridges in CuNCN: surprises on the way from copper oxides to their nitride analogs

    Full text link
    We report on the unexpected uniform spin chain physics in CuNCN, the insulating nitride analog of copper oxides. Based on full-potential band structure calculations, we derive the relevant microscopic parameters, estimate individual exchange couplings, and establish a realistic spin model of this compound. The structure of CuNCN contains chains of edge-sharing CuN(4) squares. As a surprise, in contrast to analogous [CuO(2)] chains in "edge-sharing" cuprates, the leading magnetic interactions J ~ 2500 K run perpendicular to the structural [CuN(2)] chains via bridging NCN groups. The resulting spin model of a uniform chain is in agreement with the experimentally observed temperature-independent magnetic susceptibility below 300 K. The nearest-neighbor and next-nearest-neighbor interactions along the structural [CuN(2)] chains are J(1) ~ -500 K and J(2) ~ 100 K, respectively. Despite the frustrating nature of J(1) and J(2), we assign the anomaly at 70 K to long-range magnetic ordering, which is likely collinear with antiparallel and parallel arrangement of spins along the 'c' and 'a' directions, respectively. The pronounced one-dimensionality of the spin system should lead to a reduction in the ordered moment and to a suppression of the transition anomaly in the specific heat, thus impeding the experimental observation of the long-range ordering. Our results suggest CuNCN as a promising material for ballistic heat transport within spin chains, while the sizable bandwidth W ~ 3 eV may lead to a metal-insulator transition and other exotic properties under high pressure.Comment: 10 pages, 5 figures. Submitted to Phys. Rev.

    Magnetism of CuX2 frustrated chains (X = F, Cl, Br): the role of covalency

    Full text link
    Periodic and cluster density-functional theory (DFT) calculations, including DFT+U and hybrid functionals, are applied to study magnetostructural correlations in spin-1/2 frustrated chain compounds CuX2: CuCl2, CuBr2, and a fictitious chain structure of CuF2. The nearest-neighbor and second-neighbor exchange integrals, J1 and J2, are evaluated as a function of the Cu-X-Cu bridging angle, theta, in the physically relevant range 80-110deg. In the ionic CuF2, J1 is ferromagnetic for theta smaller 100deg. For larger angles, the antiferromagnetic superexchange contribution becomes dominant, in accord with the Goodenough-Kanamori-Anderson rules. However, both CuCl2 and CuBr2 feature ferromagnetic J1 in the whole angular range studied. This surprising behavior is ascribed to the increased covalency in the Cl and Br compounds, which amplifies the contribution from Hund's exchange on the ligand atoms and renders J1 ferromagnetic. At the same time, the larger spatial extent of X orbitals enhances the antiferromagnetic J2, which is realized via the long-range Cu-X-X-Cu paths. Both, periodic and cluster approaches supply a consistent description of the magnetic behavior which is in good agreement with the experimental data for CuCl2 and CuBr2. Thus, owing to their simplicity, cluster calculations have excellent potential to study magnetic correlations in more involved spin lattices and facilitate application of quantum-chemical methods
    corecore