609 research outputs found

    L’importanza del “parametro energetico” temperatura per la caratterizzazione dinamica dei materiali

    Get PDF
    Le esperienze maturate nel campo dell’analisi termica di materiali utilizzati nelle costruzioni meccaniche [1,2,3] hanno permesso di evidenziare come il rilievo della temperatura (terzo parametro) in prove statiche e dinamiche costituisca un indicatore molto importante ai fini della caratterizzazione dinamica del materiale. Essendo il rilascio termico funzione dell’energia applicata per portare a rottura il materiale, il rilievo di parametri ad esso legati, induce a nuovi ipotesi e definizioni di limiti di fatica e resistenza a tempo. Mediante l’analisi termica è possibile valutare anche parametri correlabili con il valore limite di energia a rottura El del materiale. In [4] era stato già messo in evidenza da A. Risitano e Altri che, in prove statiche di trazione, l’inizio della zona di prima plasticizzazione del materiale, in termine di tensione, era osservabile dalla curva di variazione di temperatura deltaT con il procedere della prova. Nello stesso lavoro si evidenziava come la velocità di prova avesse poca influenza sui valori della variazione di temperatura specialmente durante la fase elastica. Operando con sensori sempre più precisi e per obbiettivi rivolti alla ricerca dell’energia limite a rottura è stato osservato dagli autori che il seguire la variazione della temperatura sulla superficie del provino, in prove statiche di trazione, permette di legare i classici valori di resistenza all’oscillazione ?0 con una “temperatura limite” T0 corrispondente all’inizio di andamenti non lineari della stessa. In questa sede si evidenzia un modello di comportamento fisico del materiale durante le prova di trazione che giustifica, in modo semplice, la capacità di risalire, attraverso la conoscenza sperimentale del limite di comportamento termo-elastico, ai classici parametri di resistenza a fatica. Viene riportato, a titolo di esempio, il risultato relativo a provini piatti forati in acciaio facenti parte di una serie utilizzati per altri scopi (formeranno oggetto di altra pubblicazione) con i quali anche mediante prova statica si è determinata la loro resistenza all’oscillazione

    Rudimentary G-Quadruplex-Based Telomere Capping In Saccharomyces Cerevisiae

    Get PDF
    Telomere capping conceals chromosome ends from exonucleases and checkpoints, but the full range of capping mechanisms is not well defined. Telomeres have the potential to form G-quadruplex (G4) DNA, although evidence for telomere G4 DNA function in vivo is limited. In budding yeast, capping requires the Cdc13 protein and is lost at nonpermissive temperatures in cdc13-1 mutants. Here, we use several independent G4 DNA-stabilizing treatments to suppress cdc13-1 capping defects. These include overexpression of three different G4 DNA binding proteins, loss of the G4 DNA unwinding helicase Sgs1, or treatment with small molecule G4 DNA ligands. In vitro, we show that protein-bound G4 DNA at a 3\u27 overhang inhibits 5\u27-\u3e 3\u27 resection of a paired strand by exonuclease I. These findings demonstrate that, at least in the absence of full natural capping, G4 DNA can play a positive role at telomeres in vivo

    L’importanza del “parametro energetico” temperatura per la caratterizzazione dinamica dei materiali

    Get PDF
    Le esperienze maturate nel campo dell’analisi termica di materiali utilizzati nelle costruzioni meccaniche [1,2,3] hanno permesso di evidenziare come il rilievo della temperatura (terzo parametro) in prove statiche e dinamiche costituisca un indicatore molto importante ai fini della caratterizzazione dinamica del materiale. Essendo il rilascio termico funzione dell’energia applicata per portare a rottura il materiale, il rilievo di parametri ad esso legati, induce a nuovi ipotesi e definizioni di limiti di fatica e resistenza a tempo. Mediante l’analisi termica è possibile valutare anche parametri correlabili con il valore limite di energia a rottura El del materiale. In [4] era stato già messo in evidenza da A. Risitano e Altri che, in prove statiche di trazione, l’inizio della zona di prima plasticizzazione del materiale, in termine di tensione, era osservabile dalla curva di variazione di temperatura deltaT con il procedere della prova. Nello stesso lavoro si evidenziava come la velocità di prova avesse poca influenza sui valori della variazione di temperatura specialmente durante la fase elastica. Operando con sensori sempre più precisi e per obbiettivi rivolti alla ricerca dell’energia limite a rottura è stato osservato dagli autori che il seguire la variazione della temperatura sulla superficie del provino, in prove statiche di trazione, permette di legare i classici valori di resistenza all’oscillazione ?0 con una “temperatura limite” T0 corrispondente all’inizio di andamenti non lineari della stessa. In questa sede si evidenzia un modello di comportamento fisico del materiale durante le prova di trazione che giustifica, in modo semplice, la capacità di risalire, attraverso la conoscenza sperimentale del limite di comportamento termo-elastico, ai classici parametri di resistenza a fatica. Viene riportato, a titolo di esempio, il risultato relativo a provini piatti forati in acciaio facenti parte di una serie utilizzati per altri scopi (formeranno oggetto di altra pubblicazione) con i quali anche mediante prova statica si è determinata la loro resistenza all’oscillazione

    Definition of the linearity loss of the surface temperature in static tensile tests

    Get PDF
    Static traction tests on material samples for mechanical constructions have pointed out the loss of linearity of the specimen surface temperature with the applied load. This phenomenon is due to the heat generation caused by the local microplasticizations which carry the material to deviate from its behavior, perfectly thermoelastic. The identification of the static load which determines the loss of linearity under the temperature stress becomes extremely important to define an initial dynamic characterization of the material. The temperature variations that can be read during the static loads applications are often very limited (a few tenths of degree for every 100 MPa in steels) and they require the use of special temperature sensors able to measure the temperature variations. The experience acquired in such analysis highlighted that, dealing with highly accurate sensors or with particular materials, the identification of the first loss of linearity can be influenced by the investigator himself mainly for the above mentioned limited temperature variations which can lead to incorrect estimations, sometimes really significant. Checking the validity and the above mentioned observations on the different steels, this work proposes the application of the autocorrelation function to the data collected during the application of a static load in order to make the results of the thermal analysis free from the sensitivity of the operator and also to make the result as objective as possible in order to detect the time of the loss of linearity of the temperature-time function

    Energy release as a parameter for fatigue design of additive manufactured metals

    Get PDF
    Additive manufacturing (AM) is spreading in a wide range of industrial fields. The influence of the printing parameters on the mechanical performance is still an open issue among researchers, particularly when dealing with fatigue loads, which can lead to an unexpected failure. Classical fatigue tests require a large amount of time and materials to be consumed. Compared to the traditional fatigue assessment, the thermographic method (TM) is able to derive in a very rapid way the SN curve and fatigue limit of the material monitoring its energetic release during fatigue tests. In this work, for the first time, the energetic release during fatigue test has been evaluated in specimens made of AISI 316L, obtained by SLM technique. Compared to literature data, the specimens show premature failure, even at low stress levels, with brittle fracture surfaces. The internal microstructure seems to be strictly related to the energetic release of the material

    Fatigue assessment by energy approach during tensile tests on AISI 304 steel

    Get PDF
    Estimation of the fatigue limit for steel ductile materials using non-destructive methods is a topic of great interest to researchers today. In recent years, the method adopted has implemented infrared sensors to detect the surface temperature and correlate it with the fatigue limit. In previous paper, a new energy approach was proposed to investigate the fatigue limit during tensile test. The numerical procedure proposed by Chrysochoos is adopted to clean infrared images and applied to analyse the surface heat sources during tensile test. AISI 304 specimens with rectangular cross-sections are tested. Moreover fatigue tests at increasing loads were carried out on steel by a stepwise succession, applied to the same specimen, for applying the thermographic method. The predictions of the fatigue limit, obtained by the analysis of the energy evolution during the static tests, were compared with the predictions obtained applying the thermographic method during fatigue tests
    corecore