2,221 research outputs found

    Explicit solution of the linearized Einstein equations in TT gauge for all multipoles

    Full text link
    We write out the explicit form of the metric for a linearized gravitational wave in the transverse-traceless gauge for any multipole, thus generalizing the well-known quadrupole solution of Teukolsky. The solution is derived using the generalized Regge-Wheeler-Zerilli formalism developed by Sarbach and Tiglio.Comment: 9 pages. Minor corrections, updated references. Final version to appear in Class. Quantum Gra

    Gauge drivers for the generalized harmonic Einstein equations

    Get PDF
    The generalized harmonic representation of Einstein's equations is manifestly hyperbolic for a large class of gauge conditions. Unfortunately most of the useful gauges developed over the past several decades by the numerical relativity community are incompatible with the hyperbolicity of the equations in this form. This paper presents a new method of imposing gauge conditions that preserves hyperbolicity for a much wider class of conditions, including as special cases many of the standard ones used in numerical relativity: e.g., K freezing, Gamma freezing, Bona-MassĂł slicing, conformal Gamma drivers, etc. Analytical and numerical results are presented which test the stability and the effectiveness of this new gauge-driver evolution system

    Implementation of higher-order absorbing boundary conditions for the Einstein equations

    Full text link
    We present an implementation of absorbing boundary conditions for the Einstein equations based on the recent work of Buchman and Sarbach. In this paper, we assume that spacetime may be linearized about Minkowski space close to the outer boundary, which is taken to be a coordinate sphere. We reformulate the boundary conditions as conditions on the gauge-invariant Regge-Wheeler-Zerilli scalars. Higher-order radial derivatives are eliminated by rewriting the boundary conditions as a system of ODEs for a set of auxiliary variables intrinsic to the boundary. From these we construct boundary data for a set of well-posed constraint-preserving boundary conditions for the Einstein equations in a first-order generalized harmonic formulation. This construction has direct applications to outer boundary conditions in simulations of isolated systems (e.g., binary black holes) as well as to the problem of Cauchy-perturbative matching. As a test problem for our numerical implementation, we consider linearized multipolar gravitational waves in TT gauge, with angular momentum numbers l=2 (Teukolsky waves), 3 and 4. We demonstrate that the perfectly absorbing boundary condition B_L of order L=l yields no spurious reflections to linear order in perturbation theory. This is in contrast to the lower-order absorbing boundary conditions B_L with L<l, which include the widely used freezing-Psi_0 boundary condition that imposes the vanishing of the Newman-Penrose scalar Psi_0.Comment: 25 pages, 9 figures. Minor clarifications. Final version to appear in Class. Quantum Grav

    A New Generalized Harmonic Evolution System

    Get PDF
    A new representation of the Einstein evolution equations is presented that is first order, linearly degenerate, and symmetric hyperbolic. This new system uses the generalized harmonic method to specify the coordinates, and exponentially suppresses all small short-wavelength constraint violations. Physical and constraint-preserving boundary conditions are derived for this system, and numerical tests that demonstrate the effectiveness of the constraint suppression properties and the constraint-preserving boundary conditions are presented.Comment: Updated to agree with published versio

    Regularity of the Einstein Equations at Future Null Infinity

    Full text link
    When Einstein's equations for an asymptotically flat, vacuum spacetime are reexpressed in terms of an appropriate conformal metric that is regular at (future) null infinity, they develop apparently singular terms in the associated conformal factor and thus appear to be ill-behaved at this (exterior) boundary. In this article however we show, through an enforcement of the Hamiltonian and momentum constraints to the needed order in a Taylor expansion, that these apparently singular terms are not only regular at the boundary but can in fact be explicitly evaluated there in terms of conformally regular geometric data. Though we employ a rather rigidly constrained and gauge fixed formulation of the field equations, we discuss the extent to which we expect our results to have a more 'universal' significance and, in particular, to be applicable, after minor modifications, to alternative formulations.Comment: 43 pages, no figures, AMS-TeX. Minor revisions, updated to agree with published versio

    An axisymmetric evolution code for the Einstein equations on hyperboloidal slices

    Full text link
    We present the first stable dynamical numerical evolutions of the Einstein equations in terms of a conformally rescaled metric on hyperboloidal hypersurfaces extending to future null infinity. Axisymmetry is imposed in order to reduce the computational cost. The formulation is based on an earlier axisymmetric evolution scheme, adapted to time slices of constant mean curvature. Ideas from a previous study by Moncrief and the author are applied in order to regularize the formally singular evolution equations at future null infinity. Long-term stable and convergent evolutions of Schwarzschild spacetime are obtained, including a gravitational perturbation. The Bondi news function is evaluated at future null infinity.Comment: 21 pages, 4 figures. Minor additions, updated to agree with journal versio

    Biomass production and feeding value of whole-crop cereal-legume-silages

    Get PDF
    In eastern Finland, several mixtures of spring wheat, spring barley, spring oats and/or rye with vetches and/or peas were evaluated in field experiments in 2005-2007 for their dry matter procuction, crude protein concentration and digestibility using three different harvesting times

    Stable radiation-controlling boundary conditions for the generalized harmonic Einstein equations

    Get PDF
    This paper is concerned with the initial-boundary value problem for the Einstein equations in a first-order generalized harmonic formulation. We impose boundary conditions that preserve the constraints and control the incoming gravitational radiation by prescribing data for the incoming fields of the Weyl tensor. High-frequency perturbations about any given spacetime (including a shift vector with subluminal normal component) are analyzed using the Fourier-Laplace technique. We show that the system is boundary-stable. In addition, we develop a criterion that can be used to detect weak instabilities with polynomial time dependence, and we show that our system does not suffer from such instabilities. A numerical robust stability test supports our claim that the initial-boundary value problem is most likely to be well-posed even if nonzero initial and source data are included.Comment: 27 pages, 4 figures; more numerical results and references added, several minor amendments; version accepted for publication in Class. Quantum Gra

    Testing outer boundary treatments for the Einstein equations

    Get PDF
    Various methods of treating outer boundaries in numerical relativity are compared using a simple test problem: a Schwarzschild black hole with an outgoing gravitational wave perturbation. Numerical solutions computed using different boundary treatments are compared to a `reference' numerical solution obtained by placing the outer boundary at a very large radius. For each boundary treatment, the full solutions including constraint violations and extracted gravitational waves are compared to those of the reference solution, thereby assessing the reflections caused by the artificial boundary. These tests use a first-order generalized harmonic formulation of the Einstein equations. Constraint-preserving boundary conditions for this system are reviewed, and an improved boundary condition on the gauge degrees of freedom is presented. Alternate boundary conditions evaluated here include freezing the incoming characteristic fields, Sommerfeld boundary conditions, and the constraint-preserving boundary conditions of Kreiss and Winicour. Rather different approaches to boundary treatments, such as sponge layers and spatial compactification, are also tested. Overall the best treatment found here combines boundary conditions that preserve the constraints, freeze the Newman-Penrose scalar Psi_0, and control gauge reflections.Comment: Modified to agree with version accepted for publication in Class. Quantum Gra
    • …
    corecore