906 research outputs found

    Aircraft control via variable cant-angle winglets

    Get PDF
    Copyright @ 2008 American Institute of Aeronautics and AstronauticsThis paper investigates a novel method for the control of "morphing" aircraft. The concept consists of a pair of winglets; with adjustable cant angle, independently actuated and mounted at the tips of a baseline flying wing. The general philosophy behind the concept was that for specific flight conditions such as a coordinated turn, the use of two control devices would be sufficient for adequate control. Computations with a vortex lattice model and subsequent wind-tunnel tests demonstrate the viability of the concept, with individual and/or dual winglet deflection producing multi-axis coupled control moments. Comparisons between the experimental and computational results showed reasonable to good agreement, with the major discrepancies thought to be due to wind-tunnel model aeroelastic effects.This work has been supported by a Marie Curie excellence research grant funded by the European Commission

    Modematching an optical quantum memory

    Full text link
    We analyse the off-resonant Raman interaction of a single broadband photon, copropagating with a classical `control' pulse, with an atomic ensemble. It is shown that the classical electrodynamical structure of the interaction guarantees canonical evolution of the quantum mechanical field operators. This allows the interaction to be decomposed as a beamsplitter transformation between optical and material excitations on a mode-by-mode basis. A single, dominant modefunction describes the dynamics for arbitrary control pulse shapes. Complete transfer of the quantum state of the incident photon to a collective dark state within the ensemble can be achieved by shaping the control pulse so as to match the dominant mode to the temporal mode of the photon. Readout of the material excitation, back to the optical field, is considered in the context of the symmetry connecting the input and output modes. Finally, we show that the transverse spatial structure of the interaction is characterised by the same mode decomposition.Comment: 17 pages, 4 figures. Brief section added treating the transverse spatial structure of the memory interaction. Some references added. A few typos fixe

    Self-consistent characterization of light statistics

    Full text link
    We demonstrate the possibility of a self-consistent characterization of the photon-number statistics of a light field by using photoemissive detectors with internal gain simply endowed with linear input/output responses. The method can be applied to both microscopic and mesoscopic photon-number regimes. The detectors must operate in the linear range without need of photon-counting capabilities.Comment: To be published in "Journal of Modern Optics

    Spatial demography:A unifying core and agenda for further research

    Get PDF
    With increases in the availability of geo‐referenced data, there has been a push for developing better methods to study demographic processes across space. This paper reviews the recent developments in “spatial demography” and argues that an important aspect has been neglected, namely, the focus on the dynamics and interactions of population change across space, which is an area that should be central to the field. Frameworks for analysing spatial demography were first proposed in multiregional demography. This paper revisits these methods and then describes how methods developed by geographers, economists, and other social scientists for analysing spatial data may be better integrated to study spatial population dynamics

    Einstein-Podolsky-Rosen correlations via dissociation of a molecular Bose-Einstein condensate

    Get PDF
    Recent experimental measurements of atomic intensity correlations through atom shot noise suggest that atomic quadrature phase correlations may soon be measured with a similar precision. We propose a test of local realism with mesoscopic numbers of massive particles based on such measurements. Using dissociation of a Bose-Einstein condensate of diatomic molecules into bosonic atoms, we demonstrate that strongly entangled atomic beams may be produced which possess Einstein-Podolsky-Rosen (EPR) correlations in field quadratures, in direct analogy to the position and momentum correlations originally considered by EPR.Comment: Final published version (corrections in Ref. [32], updated references

    Spatial demography:A unifying core and agenda for further research

    Get PDF
    With increases in the availability of geo‐referenced data, there has been a push for developing better methods to study demographic processes across space. This paper reviews the recent developments in “spatial demography” and argues that an important aspect has been neglected, namely, the focus on the dynamics and interactions of population change across space, which is an area that should be central to the field. Frameworks for analysing spatial demography were first proposed in multiregional demography. This paper revisits these methods and then describes how methods developed by geographers, economists, and other social scientists for analysing spatial data may be better integrated to study spatial population dynamics

    Reconstruction of photon statistics using low performance photon counters

    Get PDF
    The output of a photodetector consists of a current pulse whose charge has the statistical distribution of the actual photon numbers convolved with a Bernoulli distribution. Photodetectors are characterized by a nonunit quantum efficiency, i.e. not all the photons lead to a charge, and by a finite resolution, i.e. a different number of detected photons leads to a discriminable values of the charge only up to a maximum value. We present a detailed comparison, based on Monte Carlo simulated experiments and real data, among the performances of detectors with different upper limits of counting capability. In our scheme the inversion of Bernoulli convolution is performed by maximum-likelihood methods assisted by measurements taken at different quantum efficiencies. We show that detectors that are only able to discriminate between zero, one and more than one detected photons are generally enough to provide a reliable reconstruction of the photon statistics for single-peaked distributions, while detectors with higher resolution limits do not lead to further improvements. In addition, we demonstrate that, for semiclassical states, even on/off detectors are enough to provide a good reconstruction. Finally, we show that a reliable reconstruction of multi-peaked distributions requires either higher quantum efficiency or better capability in discriminating high number of detected photons.Comment: 8 pages, 3 figure

    Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion

    Get PDF
    We study the conditional preparation of single photons based on parametric downconversion, where the detection of one photon from a given pair heralds the existence of a single photon in the conjugate mode. We derive conditions on the modal characteristics of the photon pairs, which ensure that the conditionally prepared single photons are quantum-mechanically pure. We propose specific experimental techniques that yield photon pairs ideally suited for single-photon conditional preparation.Comment: 14 pages, 6 figure
    • 

    corecore