1,046 research outputs found

    Liquid phase hydrogenation of crotonaldehyde over Pt/SiO2 catalysts

    Get PDF
    The dependence of the catalytic properties of Pt/SiO2 catalysts for the hydrogenation of crotonaldehyde on the hydrogen pressure, the reaction temperature, the nature of the solvent and the presence of several additives were investigated. Strong deactivation of the catalysts mainly caused by decarbonylation of crotonaldehyde and irreversible adsorption of CO was observed. The initial activity of the deactivated catalysts is regained by oxidation of the adsorbed CO to CO2 by purging with air. The selectivity to crotylalcohol increased with increasing number of turnovers per metal site. This is explained with preferential blocking of the nonselective sites on the metal crystallites by CO and by a slow surface modification of the aging catalyst with organic deposits. The overall rate and the selectivity to the saturated aldehyde are markedly enhanced by an increase in hydrogen pressure and by a decrease in reaction temperature. The addition of modifiers such as potassium acetate, triphenylphosphine and thiophene had only little influence on the activity and the selectivity of the catalysts

    The Jamio{\l}kowski isomorphism and a conceptionally simple proof for the correspondence between vectors having Schmidt number kk and kk-positive maps

    Get PDF
    Positive maps which are not completely positive are used in quantum information theory as witnesses for convex sets of states, in particular as entanglement witnesses and more generally as witnesses for states having Schmidt number not greater than k. It is known that such witnesses are related to k-positive maps. In this article we propose a new proof for the correspondence between vectors having Schmidt number k and k-positive maps using Jamiolkowski's criterion for positivity of linear maps; to this aim, we also investigate the precise notion of the term "Jamiolkowski isomorphism". As consequences of our proof we get the Jamiolkowski criterion for complete positivity, and we find a special case of a result by Choi, namely that k-positivity implies complete positivity, if k is the dimension of the smaller one of the Hilbert spaces on which the operators act.Comment: 9 page

    Multiple Modes of Phase Locking between Sniffing and Whisking during Active Exploration

    Get PDF
    Sense organs are often actively controlled by motor processes and such active sensing profoundly shapes the timing of sensory information flow. The temporal coordination between different active sensing processes is less well understood but is essential for multisensory integration, coordination between brain regions, and energetically optimal sampling strategies. Here we studied the coordination between sniffing and whisking, the motor processes in rodents that control the acquisition of smell and touch information, respectively. Sniffing, high-frequency respiratory bouts, and whisking, rapid back and forth movements of mystacial whiskers, occur in the same theta frequency range (4-12 Hz) leading to a hypothesis that these sensorimotor rhythms are phase locked. To test this, we monitored sniffing using a thermocouple in the nasal cavity and whisking with an electromyogram of the mystacial pad in rats engaged in an open field reward foraging behavior. During bouts of exploration, sniffing and whisking showed strong one-to-one phase locking within the theta frequency range (4-12 Hz). Interestingly, we also observed multimode phase locking with multiple whisks within a sniff cycle or multiple sniffs within a whisk cycle-always at the same preferred phase. This specific phase relationship coupled the acquisition phases of the two sensorimotor rhythms, inhalation and whisker protraction. Our results suggest that sniffing and whisking may be under the control of interdependent rhythm generators that dynamically coordinate active acquisition of olfactory and somatosensory information

    Error tolerance of two-basis quantum key-distribution protocols using qudits and two-way classical communication

    Full text link
    We investigate the error tolerance of quantum cryptographic protocols using dd-level systems. In particular, we focus on prepare-and-measure schemes that use two mutually unbiased bases and a key-distillation procedure with two-way classical communication. For arbitrary quantum channels, we obtain a sufficient condition for secret-key distillation which, in the case of isotropic quantum channels, yields an analytic expression for the maximally tolerable error rate of the cryptographic protocols under consideration. The difference between the tolerable error rate and its theoretical upper bound tends slowly to zero for sufficiently large dimensions of the information carriers.Comment: 10 pages, 1 figur

    Feasibility of Producing Electricity, Hydrogen, and Chlorine via Reverse Electrodialysis

    Get PDF
    Reverse electrodialysis (RED) is a technology to generate electricity from two streams with different salinities. While RED systems have been conventionally used for electricity generation, recent works explored combining RED for production of valuable gases. This work investigates the feasibility of producing hydrogen and chlorine in addition to electricity in an RED stack and identifies potential levers for improvement. A simplified one-dimensional model is adopted to assess the technical and economic feasibility of the process. We notice a strong disparity in typical current densities of RED fed with seawater and river water and that in typical water (or chlor-alkali) electrolysis. This can be partly mitigated by using brine and seawater as RED feeds. Considering such an RED system, we estimate a hydrogen production of 1.37 mol/(m2h) and an electrical power density of 1.19 W/m2. Although this exceeds previously reported hydrogen production rates in combination with RED, the levelized costs of products are 1-2 orders of magnitude higher than the current market prices at the current state. The levelized costs of products are very sensitive to the membrane price and performance. Hence, going forward, manufacturing thinner and highly selective membranes is required to make the system competitive against the consolidated technologies
    • …
    corecore