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The usual virial theorem, relating kinetic and potential
energy, is extended to a molecule by the use of the true wave
function. The virial theorem is also obtained for a molecule
from a trial wave function which is scaled separately for
electronic and nuclear coordinates. A transformation to the
body fixed system is made to separate the center of mass
motion exactly. The virial theorems are then obtained for
the electronic and nuclear motions, using exact as well as
trial electronic and nuclear wave functions.

If only a single scaling parameter is used for the
electronic and the nuclear coordinates, an extraneous term
is obtained in the virial theorem for the electronic motion.
This extra term is not present if the electronic and nuclear
coordinates are scaled differently. Further, the relation-
ship between the virial theorems for the electronic and
nuclear motion to the virial theorem for the whole molecule
is shown.

In the nonstationary state the virial theorem relates
the time average of the quantum mechanical average of the

kinetic energy to the radius vector dotted into the force.
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I. INTRODUCTION

The virial theorem,which was originally proved for

classical systems by Clausius,l

relates the time averages

of the kinetic energy to the virial of force, i.e., the
radius vector dotted into the force. For a homogeneous
potential, like the Coulomb potential, the virial is pro-
portional to the time average of the potential energy. With
the development of guantum mechanics, Born, Heisenberg, and
Jordon2 derived the guantum mechanical virial theorem only
for the exact solutions in stationary states for homogeneous
potentials. An attempt to derive the virial theorem from

the variational principle was first made by Fock,3 using a
scaled wave function.4 The case of a molecule in which the
nuclei are fixed was considered by Slater.5 Lc'jwdin6 used a
single scaling parameter and minimized the energy with respect
to it to obtain the virial theorem. Thus Ldwdin showed the
importance of the connection between scaling, the variational
principle,and the virial theorem. For a system of electrons,
Brown7 used different scaling parameters for each electronic
coordinate in a trial wave function, antisymmetrized, and

varied the energy to obtain the virial theorem.



In this thesis the virial theorem is further extended
to a whole molecule by scaling each electronic and nuclear
’coordinate in the wave function separately. Since the energy
is minimized with respect to the scaling parameters, the use
of different scaling parameters will give a better energy
value.

In order to obtain the virial theorem for a molecule,
Froman's treatment8 of the Born-Oppenheimer approximation
(BOA) to the body fixed system is made. Fr6man8 introduced
a transformation to the body fixed system in order to separate
the center of mass motion first, and then made the BOA to
separate the electronic and nuclear equations. Frdman's
method of making the BOA is better than the usual approach,
because the center of mass motion for the whole system is
first separated out exactly. On the other hand, in the usual
BOA the center of mass and nuclear motion is separated after
the electronic motion.

By using a true wave function in the case of fixed

nuclei in a molecule,Slater5

obtained an extraneous term in
the virial theorem for the electronic motion. Also, if the
same scaling parameter is used for the electronic and the
nuclear coordinates, the same extra term appears in the

virial theorem for the electronic mot:'Lon.G’g'lO However, it is



shown in this thesis that no such extra term is present
if the electronic virial theorem in the BOA is derived by
scaling each electronic and nuclear coordinate separately.

Finally, the relationship between the virial theorem
in BOA and the virial theorem for the whole molecule is
shown.

Another new result obtained here is the derivation of
the quantum mechanical virial theorem for a nonstationary

state. Previously2

it was derived only for the stationary
state. The virial theorem for nonstationary state is the
quantum mechanical analog of the classical virial theorem,
and it relates the time average of the expectation values

of the quantum mechanical gquantities. In the stationary
state of the system no time average is needed and the virial
theorem is shown to follow directly.

In the next section the virial theorem for a classical
system is reviewed. The quantum mechanical virial theorem
for a nohstationary state is obtained in Section III.

In Section IV the siwple scaling idea is developed
first and Lowdin's derivation of the virial theorem is given.

The last part of this section deals with generalized scaling

and the virial theorem for the whole molecule.



In Section V the transformation to the body-fixed system

is made. The center of mass motion is first separated out.

Then the nuclear and electronic equations are separated in

the BOA.

In Section VI the virial theorem for the electronic

and nuclear motions in
electronic and nuclear
virial theorem for the
VII the electronic and
derived by generalized

trial functions.

BOA is obtained,using the exact
functions. The relationship to the
wﬁole molecule is shown. In Section
nuclear virial theorems in BOA are

scaling of the electronic and nuclear

The conclusions are given in Section VIII. The details

of the calculations are in the Appendices.



II. VIRIAL THEOREM IN CLASSICAL MECHANICS

The virial theorem of Clausius was derived for classical
systems.1 It states that the time average of the kinetic
energy of a system of particles is equal to the virial of
Clausius for the internal and external forces acting on the
particles. For a system of N+n particles, N of which are
identical and n of which are different, the derivation of the
virial theorem follows from the fundamental equations of
motion. This system is the classical analog of a molecule
with N electrons and n different nuclei. Newton's second
law gives .

ko= E
whereﬁtz%a‘%%is the set of momenta, «<=1,.. N, (z1-- v,
The position vectors of the (N+n) particles are ¥ = %7, R={Rz3
where « runs from 1 to N and i from 1 to n.

The'forces are E}:§ 53, Eﬁ%,and include the forces of
constraint and internal forces.

Consider the equation of motion for the guantity

N
6 = i{: %\. Yo ) (2.2)

(S -

The derivative of G with respect to the time is



N N
Q\,Q_=Z§-£x +§px.g,
IX:!M

$

(2.3)

Tt is shown in the Appendix in Equation (A.l) that the first

term on the right side of Equation (2.3) reduces to twice

the 'electronid kinetic energy,

N ' .
E Ay,%( ' E( = 2 Te - (2.4)

Xz
Using the equation of motion (2.1), the last term of~

Equation (2.3) becormes

N N
Z E‘x ' \;‘5 = Eg< N L
X = | X = { ~ (2.5)
Thus Equation (2.3) reduces to
~N
d} x = (2.6)

The time average on the left side of the Equation (2.6)"

is o
L._;YY\ . ___i__ /dt d___Gl —_ ‘__;m, G\(9> -~ GCO) - E
6-—> ® &) d)’ e___;m G - d+

(2.7)

which vanishes if the function G is periodic with period 6,

or if G is bounded. Therefore, Equation (2.6) can be



averaged over all the time to give

(2.8)

37T

—_ ; N

T = — = s

e = > x
2 [ = ~

which is the virial theorem in classical mechanics for a

system of "electrons." The quantity on the right side of

Equation (2.8) is called the virial of Clausius.

A similar expression for a system of n 'nuclei”is

— 2
T, = - o Eﬁﬁ, (2.9)

=1

where the 'nuclear" kinetic energy is
(2.10)

s

I
]
30~
o

L ~N n
T = ~_!_§ 5.c~¢§ FoRe (2.11)
Pa'al - o) ~ A

=

where the total kinetic energy of the system is

T = Te + T, (2.12)
Further, if the forces F, and F. are derived from a
s Vg e

potential V, then

E - - 9V 1 F - - 2V ’
- Nk - IR (2.13)

and the virial theorem belomes

—_ N 3y n v
e — __.__L k;, bl -—.J_ [
| = 5 Z =3y 3 ,Z_; TSR (2.14)

oK =

For a Coulomb potential this gives a simple relation between



the time averages of the kinetic and potential energy [see

Equation (A.10) in the Appendix].

T =

v . (2.15)
5 V

The Coulomb potential V is

Vo o= Vee ¥ Vhe, Il vhn ’ (2.16)
where
v Z ‘ (2.17)-
ee D ‘ n\_ '
KER =1
is the electronic potential energy,
N n
V = -1 E Z e”
e 2 2.18)
Azl £’=l \g N E’\'\ ( *

is the nuclear-electronic potential energy, and

ZZ e
Von ;E:j Rs\ (2.19)

f#ij i -~
is the nuclear potentlal energy.

In going over to gquantum mechanics, all the gquantities
will be replaced by the corresponding operators, and the time

average of the gquantum mechanical average will be taken.



ITI. VIRIAL THEOREM IN QUANTUM MECHANICS

"FOR THE EXACT WAVE FUNCTION

The virial theorem in guantum mechanics was first
obtained for the exact wave function in a stationary state.
It relates the expectation value of the kinetic energy to
that of the radius vector dotted with the gradient of the
potential.

For a system of N electrons !, ... Y, of equal mass m and
n nuclei 5;"j§n having masses v™;,the time-dependent
Schrddinger equation is

.+ 2@

H ¢ =h 5t (3.1)
where h is Planck's constant divided by 2 T and d is the
exact wave function. The Hamiltonian is the sum of the
kinetic and potential energy operators

H = 1T N . (3.2)

The kinetic energy operator is the sum of electronic
and nuclear kinetic energies
T = Te + Th . ' (3.3)

The electronic kinetic energy is

T, =y & -5.i Y
e TLE R 5p G
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where

38T

& 0

)
3

(3.5)

is the momentum operator. The nuclear kinetic énergy is

N 2 A n A
1T o= § £ = E -h ,
n m: 2 : A
- 2 EIIS S (3.6)
where the momentum operator for the i, nucleus is
+
P,( = - D . ' (3.7)
~ n 9 Rz

The potential for a system of charged particles dealt
with here was defined previously in Equation (2.16).
For a derivation of the virial theorem consider the

expectation value of the operator I, . P, and f&-‘% . The

e

time derivatives of< ¥,- PK> and < & - PxNare given in Equations

(B.3) and (B.4) of the Appendix to be

-t
d e B> =UrIKE % ko HI>
SR (3.8)

and

d < R-B> =(in) CECRB,hID,

ol (3.9)

where the angular brackets denote the gquantum mechanical
average with respect to the function @ and the commutator
bracket [A, H] is defined hy

LA NI = AH-HA | (3.10)

Applying the commutation relation

[ x.,B] = % ‘ (3.11)
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to [X«aa*] Equation (B.16) in the Appendix gives
N

, ~N
d<&y - d o > =2

< l> 2‘<va.9.!>

1 (3.12)

where G is given by the Equation (2.2).

If the time average of this equation is taken with the
restriction that the expectation value of G is bounded for
all times, the guantum mechanical virial theorem is obtained
for the general nonstationary state. From Equation (B.21)

in the Appendix

™~
-l <L§-~i Re Y
2:: 25 2 B >’(312)

which is the virial theorem for the whole molecule.

e

+ L
X

\\*

f

AL

For a stationary state no time average is needed and the

virial theorem,as obtained in Equation (B.22) in the Appendix,

is

CT> = KRy ot T ey g

>R (3.13)

In the next section the virial theorem for the energy

calculated from a trial wave function is derived.

For a Coulomb potential, from Appendix A,the virial

theorem becomes

Ty =-L vy

(3.14)



IV. VIRIAL THEOREM FROM A TRIAL WAVE FUNCTION.

In the last section the virial theorem from an exact
wave function for both the stationary and the nonstationary
stateswas obtained. The stationary-state Schr®dinger equa-
tion is

Hé&==E¢
(4.1)

where Eg is the true ground state energy of the system. The
Hamiltonian is given by the Equation (2.14).

Many times the exact wave function of a system is not
known. Then the energy can be calculated from a trial func-
tion. IfW(¥,- ¥y R, - R)is a trial function, the expectation

value of the Hamiltonian is defined by

e (elwlw ), |
RS A (4.2)

To get a better energy value, Hylleraas4 introduced

a scaled function and varied the scaling parameter. A trial
function is said to be scaled if all of its coordinates from
a fixed origin are stretched or compressed. The wave function

can be scaled using a single scaling parameter or different

12
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scaling parameters. The virial theorem will be first derived
from the simple scaling and then from the generalized scaling

‘of a trial function.

A. Simple Scaling

1. For The Whole Molecule

A simple derivation of the virial theorem was first

3,4,6

obtained by using the simple scaling concept. If all

the coordinates are multiplied by a factor ﬂ, then the scaled

function is

TNt
L A L TERLOR
(4.3)

For the scaled function (4.3) the expectation value of the

Hamiltonian for a Coulomb potential is given by

ELM] = <£Jf4|f%2 :?f<~r>+_ﬁ<v>.(4A)

<&Lﬂ]]\gﬂ]>

If the energy is minimized with respect to W\,then

= 4 ELMT = 2 [an<T < (4.5)
o = 2 = -2 ~+ AV .
o = LA >
where the expectation values are with respect to the wave
function of Equation (4.3) with 7 =1. It is shown in
Equation (C.7) of the Appendix that the Equation (4.5)

yields the relation



<T Z@‘( 'B'f Z<” R/ (ae)

ol = |

which is the virial theorem. The angular brackets < > in
Equation (4.6) denote the expectation values with respect
to the scaled function. For the Coulomb potential given in
the Equation (2.16), the Equation (4.6) becomes [see Equa~-
tion (C.11) in the Appendix},

<T>ﬁ7 :-—%(V} : (4.7)
which is the virial theorem first obtained by Lswdin.®
The parameter 7] is obtained from the Equation (4.5), and .
is

N = - L V>

5 at minimum. (4.8)
LT
Eliminating " from Equation (4.5), the minimum value of

the energy is given by

2

Eomin, = — 4 AV> (4.9)
' {TH .

The energy E[7] given in Equation (4.4) can be expressed as

24T

T = Bl AT [w LT, (410

14
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The curve of E against 7] is a parabola, and for m given
by Equation (4.8), a minimum energy is obtained. The virial
theorem is then automatically satisfied.

On the other hand, if our trial function is not a good
approximation to the exact wave function, then the energy
thus obtained will be very much off from the true value.

The scaling will, of course, improve the energy value. But
the energy will have to be minimized with respect to other
parameters of the function. Thus variation with respect to*r“
will not give a good value of the energy, but the virial
theorem will still hold.

Therefore, the virial theorem derived from a simple
scaled function is a necessary but not a sufficient condi-
tion for the minimum energy.

2. Simple Scaling For The Case
of Fixed Nuclei

In the case of fixed nuclei the nuclear coordinates
B\r:{ B;Q);;‘ n,are to be held fixed by some external
forces, and so the nuclear kinetic energy is zero
T8 =0 (4.11)

and the nuclear potential energy Vpp is constant. Therefore,

the Schrodinger equation of the previous section reduces to

He S5e = Loe 955_ . (4.12)
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The electronic function @%(ﬁwlg) is a function of both
the electronic and the nuclear coordinates, but the nuclear
coordinates are fixed parameters. Therefore, the electronic

energy EFE(E) depends on the nuclear coordinates, and
fo. =E, =V, . (4.13)

The Hamiltonian 1is

H, = Té + Ve ' | (4.14)

e
The electronic kinetic energy T¢ is given by Equation (3.4)

and the potential enexrgy Vg is

\/@_ = Ve: ‘*’ \/

we 2 (4.15)
where Voo and Ve are given by the Equations (2.17) and (2.18).
For a wave function scaled in both the electronic and

nuclear coordinates

3N
L, =7 (Mo MR R MR, (4l16)

-<

the expectation value of the Hamiltonian is

E—"e‘[’r]j = <\£’7 ’He_]\{/?} >/ Eoe (4.17)
CEal 5 )

Minimization of the energy with respect to ‘q leads to the

relation obtained%rom the Equation (C.19) in the Appendix:

il
2 ¢ r. .ok )-, ,
\7;>47 +<Ve>o7*Z(m‘ TD_E? ~ 0

g t
f=1{

(4.18)
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6,9

Léwdin's form of the relation is obtained for the

diatomic molecule with internuclear distance

R = R - R (4.19)
SEE — — EEC’ —_ Dl'—'g . .
2R SR, SR (4.20)

Equation (4.18) then reduces to

(4.21)

)
"
Y

AL Ty . . 2F
€ 7 + < M:>% -+ B 5

370

The extraneous term R - 3fe in the Equations (4.18) and (4.21)
: . AR

appears because all the electronic and nuclear coordinates
are scaled in the same way, using a single scaling parameter.

5

According to Slater~, this extra term is because of the force

_ 9Ee¢  which holds the nuclei fixed. If all the

LA :
coordinates are scaled differently, no such extra term appears

in the virial theorem for the electronic motion.ll

B. Generalized Scaling For The Whole Molecule

In the derivation of the virial theorem the energy is
minimized with respect to the scaling parameter. Since the
Rayleigh-Ritz principle gives an upper bound to the energy,
a better value of the energy is obtained if all the coordi-

nates of the trial function are scaled differently. Using
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this generalized scaling idea,Brown7gave the proof of the
virial theorem for a system of electrons. It will now be:
extended to the whole molecule. For the sake of simplicity,
the nuclei are assumed to be distinguishable. Then the
scaled function is obtained by properly antisymmetrizing the
trial function for the electrons. The case of nuclei as
identical particles, either bosons or fermions or a combina-
tion of both,is considered in the Appendix .E. Using a set
of scaling parameters N = §nq%for the electronic coordinates
and % = {’i_f for the nuclear coordinates, the scaled

function can be written as

nios
i1eY

3 3
R AR TR AT COOes

The antisymmetrizing operator is

P A

(O = /_\./f.[_ > t=n P (4.23)

F=4
G---nN)
A »
where the permutation P interchanges the r's only and
not the - qL Ve Vs,

The expectation value of the Hamiltonian with respect

to the scaled function is

il

¥ \
ELME] Chis[B 1% SE.
4 %ﬁ,gl e > (4.24)
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Variation of [ [ W'gJ with respect to all the parameters

47 and } gives a set of N+n equations
) ECoyT - -
El Mmoo (4.25)
and
s EL7M3T = 6 B A (4.26)
T;“g /

e NV

which determlne fq and ? .

If the Equations (4.25) and (4.26) are combined, it

follows
N n_ -
>, 2L -\-Z?)i - 0

° (4.27)

=1 N

X =i a(r’,‘

In Appendix D it is shown that this condition implies

/\j n .\ AN
CTN ;;4.._" NTR .Y N (4. 28)
A /fy)‘i - 2, (_ ~ C Z_, D&r /,),)'%

which is the virial theorem for the whole molecule. If V

QJ

is the Coulomb potential of Equation (2.16), Equation (4.28)

reduces to the form of the virial theorem

_— l_
<T°7,§“ <V/°7§

giving a relation between the expectation values of kinetic

(4.29)

and potential energies. Theffz and ¢ used in Equations (4.28)
4

and (4.29) are solutions to Equation (4.27).
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If the N dimensional vector # _ %rﬂ« is orthogonal

to the N-dimensional gradient 3F

2= ?jﬂi ? and the n-
N
dimensional vector _ ? ? % is orthogonal to the
n~dimensional gradlent _éi - __E % ', then the same equa-
°3
tion as in Equation (4.27) is obtalned.

E 2FE

QA « — =0 (4.30)

which leads to the virial theorem. Thus the virial theorem

is obtained at all the points where 7

| is orthogonal to

~n

U
I

2 E and 3% to
°7 -

the energy.

as well as the minimum of
?

Jon)

Therefore, the validity of virial theorem is

a necessary but not a sufficient condition for the minimum
energy.



V. BORN-OPPENHEIMER APPROXIMATION

In this section the Born-Oppenheimer approximation
(BOA)12 is discussed in order to separate the electronic
and the nuclear equations.

To make the BOA, start off with the total wave Equa-~

tion (4.1) in the space fixed system I'= {Y%?} , K=} R; 7
Heé, =£E9¢ (5.1)

and express the total wave function é; as a product of the

electronic and nuclear-translational functions,

¢ =@ . (x,R)E,,LR) (5.2)

In the BOA the nuclear coordinates in the electronic
function are assumed to be slowly varying in comparison to
the electronic coordinates, and can be regarded as fixed
parameters. Therefore, the electronic equations can be
separated from the nuclear equations.

In the traditional BGA the electronic motion is first
separated and then the translational and nuclear motions
are separated. Therefore, in this case only the center of

mass of the nuclei is considered and not the center of mass

21
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of the whole system. However, in a more correct approach,
the center of mass motion of the whole system should be

exactly separated before making the BOA.8 This is done by
a transformation to the body fixed coordinates relative to

the center of mass.8

In the next part of this section the
transformation to the body fixed coordinates is made to
separate out the center of mass motion. Then the electronic
and the nuclear motions are separated in the BOA. The virial

theorem can then be derived for the electronic and nuclear

equations.

A. Transformation to Body Fixed Coordinates

1. Transformation
In order to separate the center of mass motion, Fréiman8
first introduced the body fixed coordinates relative to the

center of mass for the electrons

n

X«o = e —_—F{’]— My ﬁ\( s (5.3)
ey o K:'
and for the nuclei
o n
E‘L = B«L — FV\L ZMK B«“ ‘ L + P (5.4)
OK‘.LI
where
" .
Me = 2. m, (5.5)
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is the total mass of the nuclei. The th-nucleus,which is

quite arbitrarily chosen,is given by

o | n o
‘gp - — j{: m, EK . (5.6)
MP K=t
K 2P

Thus, the pﬁh nucleus is given in terms of the remaining
(n-1) nuclei. Thus the number of degrees of freedom of the
system is reduced by three. However, these three degrees
of freedom reappear as the center of mass coocrdinates given
by
h N

gz%{;'mgx.fmggj- (5.7)

The total mass of the system is
M = M, +Nm. (5.8)

There are three degrees of freedom for the center of mass
motion and 3N+3(n-1) degrees of freedom for the particles
(omitting the ptR nucleus) referred to the center of mass.

Thus the total 3(N+n) degrees of freedom are obtained.

2. Transformation of The Hamiltonian

When the transformation of Equations (5.3) to (5.7) to
the body fixed coordinates is made on the Hamiltonian of

Equation (5.1), it is shown in the Appendix F that Equation

(5.1) becomes
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H( ,g 1,“':’".,5/0! ,@T"‘f’g:—ll,@;‘?l ] g:)
— 0 0 0 0 0 (5.9)
= [ + 7; + 7; 4 Voot Ve + Ynn ,

which is independent of the pﬁh nucleus because th nucleus

is expressed in terms of other nuclei and the center of mass

coordinate is introduced. The translational kinetic energy

of center of mass is

. 2 2
T. ::Z_J%_ Taé'c‘i : (5.10)

The electronic kinetic energy is

Lz N 2 N
EAE A ol S Y L2 (5.11)
e a:‘i‘ 2 °a<4,3::"P o X
where
_( Ly
A= + ) (5.12)

is the reduced mass of the electron. The nuclear kinetic

energy is

- ‘ l
M = (%K - ’,;{;\ . (5.14)
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It is shown in the Appendix F that the interelectronic
potential energy of the system does not change under this
transformation,but others change their form. Expressed in
terms of the coordinates referred to the center of mass,

the interelectronic potential energy is

o N o
Vee = L Z € , (5.15)
2 K#ﬁ:’ \Yg-r@o\

The nuclear-electronic pdtential is

N n - 5 N 2
° _ -1 Z, € 1S p €
Voe =500 2= L L) s ) (5.16)
<=7 K= 5(— x‘ o« =) N‘Z"E Y'YY).-Q;
K$p ” i
itp

K,x¢p H:p mPl-l ~ (5.17)

From Equations (5.11) and (5.13) it follows that the
Hamiltonian of Equation (5.9) contains the terms of the

type 9 o , ((+p) and 3 3 (k4 4)- Also, the electronic

1

w2 IR RS
and nuclear masses are replaced by their reduced masses.
The fact that there is no coupling term 2 ., in the
2R 2 ¥d

Hamiltonian simplifies the separation of the electronic and

nuclear motions.
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B. Separation of The Center of Mass Motion
The wave function ii in the new coordinate system.
depends on the center of mass coordinate, all the electronic
coordinates, and all but the p—t—-11 nuclear coordinates. For
separating the center of mass motion 42 is taken as a pro-
duct of translational and the nuclear-electronic wave

functions

g =%

[

(g) é eh(ZE ?—- o mol B\‘!‘.-'E:-ng_;ﬂp'“ ?E‘: ).

-~

4 (5.18)

When this equation is substituted into Equation (5.1) and
divided by éiT es) , Equation (5.1) is separated into

Toen

the center of mass equation

2

‘cu

2 . .
S (¢) =£., &_(¢)
2m yc? é"T o (5.19)

30

and the equation for the electronic and nuclear motion
relative to center of mass

D o o P o
LTl + ThlRPY Ve + Voo + V0] @

eeh (5.20)

__(E"— ECM)'éoen )
where ELM is a separation constant which is the kinetic

energy of the center of mass, and £°and gfcollectively

denote all electronic and nuclear coordinates, respectively.
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Equation (5.19) is the translational wave equation and
e
its solution is a plane wave € ,Where the momentum p
sa)

is related to the wave number K by

P = kK. (5.21)

The energy required for the center of mass motion is

T _
Epp = B K (5.22)
AM .
Thus, if the center of mass energy ECM + 0o . the molecule

is in an excited state. In the ground state of the molecule
Ecm =0 (5.23)
and the center of mass is at rest. Therefore, if the center
of mass is assumed to be at rest, then without loss of any
generality the separation constant can be set equal to zero.
C. Separation of Electronic and
Nuclear Motion
To make the BOA on the wave equation for the motion of
the electrons and nuclei relative to the center of mass we
assume that the relative wave function ébcv\ can be written

as

Bye, = BLR) .. (R

(5.24)
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where 4;8( e, @F} is the electronic wave function
which depends on both the electronic and the nuclear coordi-
nates,and & (R°) is the nuclear function.

’ on ~n

Equation (5.20) then becomes

(T L)+ TR ) + Vee t Ve + Vo) &, 8, = B0 &, &,

-0e

n'(5.25)

In the BOA, assume that the nuclear coordinates in the
electronic wave function are slowly varying in comparison to
the electronic coordinates, and can be regarded as fixed
parameters. Therefore, the derivative of electronic function

Qie with respect to the nuclear coordinates can be
neglected (compared to that of the nuclear function Qih ).
It is shown in Appendix G that this approximation leads to

the electronic equation

T+ s ) Fe = B8] F sisa0

where the separation constant [_ [ R°] is the electronic

energy and depends on the nuclear coordinates as parameters

only. Therefore, EOJZE:] appears as a potential energy in

the nuclear wave equation given by [See Appendix G]
(TR + Vom + Eue] G0 = Eo Bon

(5.27)

where E, is the total energy of the system.
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Thus the electronic and nuclear motions are separated
in the BOA. The derivation of the virial theorem for these

equations is given in the next section.



VI. VIRIAL THEOREM IN BORN-OPPENHEIMER
APPROXTMATION FROM AN EXACT

WAVE FUNCTION

After the separation of the electronic and the nuclear
equations, we are in a position to derive the virial theorem
in the BOA.

First the virial theorem from an exact wave

function is obtained and then in the next section the trial

function is considered.

A. Electronic Equation

In the previous section we obtained the electronic

wave equation in the Equation (5.26) given by

H:_ éce = EOQ. éoe. 4 (6'1)
0
where HZ. - Teo T Ve (6.2)

and Tg is given by the Equation (5.12). v, is given by
0 o] 0
Ve = Vee + Vpe -

] 0
Vee and V,, are defined in Equations (5.15) and (5.16).
It is shown in the Equation ( H.1l4) of the Appendix that

1 al r o A\/z
< 7é0>‘ = ‘5::;:: <TA5 ’ Y7 ;> ’
= ~

which is the virial theorem for an exact wave function of

(6.3)

the electronic equation.

30
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For the Coulomb potential given by the Egquation (5.15)
the Equation (6.3) reduces to

n

e _—_) Ve § ne (6.4)
(Tey 7 (Vee ) + < av; )

Equation (6.4) cannot be further simplified

The virial theorem for the nuclear equation is derived
in the next part of this section.

B. Nuclear Equation

The nuclear equation as obtained in Eguation (5.27) is
given by

Hy & = E &

, (6.5)
) /) O
where Hn = ot Vy (6.6)
;0
and Vi = Vo + Eee . (6.7)
From the Eguation (H2l) in the Appendix the virial
theorem for the nuclear equation is
: &
0
LTwy = E (R Zi}. (6.8)
:-l ‘
1#;p
Equation (6.8) can be redticed to
N/ BEQ
! 'e.
<> o= h>+Z (& + (6.9)
."-1 ~t

'*P
Further reduction of Equation (6.9) cannot be made.-

" The
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Equation (6.9) does not include the pth nucleus, because in
the body fixed coordinates the pth nucleus is expressed in
terms of the other (n-1) nuclei and the center of mass

coordinate is included. However, in the ground state of the

molecule, the kinetic energy of the center of mass is zero:
< T S zo . (6.10)

In the next section the virial theorem'from a trial wave
function for electronic and nuclear equations will be derived.
C. Relation Between The Virial Theorem
In The BOA and The Exact Virial
Theorem For The Whole Molecule
In separating the electronic and nuclear equations from
the total wave equation,the center of mass motion Equation
(5.19) is first separated out. This reduces the number of
degrees of freedom of the system by three. In order to have
all the (N+n) degrees of freedom,the wave function for the
center of mass should also be considered. The total wave
function is the product of the wave functions for the center
of mass, electronic and nuclear coordinates,and is given by
b = &_ &, &, (6.11)
Now the virial theorem in BOA can be expressed for a total
wave function 4&2 . PFirst, the virial theorem for the nuclear

equation is expressed in terms of & .

[=]
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1. Virial Theorem for Nuclear Equation in
Terms of Total Wave Function

The virial theorem for the nuclear eguation is given
by the Equation (6.9). For the expectation value ( 7"y the

following expression

X

(% 9 B Foe (T B B B[4 A8 8L B Bt

ffetd e & [TR 4 T 6 der e 3

ﬁda Sy dac%«g é; CE:; &, 3. doc 32;7{‘. (6.12)

is obtained. Going back to the assumption made in the BOA,
according to which the huclear coordinates appearing in the
electronic wave function are slowly varying functions com-
pared to other electronic coordinates and the nuclear
functions, it is shown in Appendix I that the Equation (6.12)

can be approximated to

{fo‘ Cdgw ) o: éoe < " >éar@°e%§gdc d @ Cﬁoe d’c:-ri"‘?%\

= “d C d Yod(B,&,) ‘Eoe i’on T &«u ‘-‘Eoe&av\%%ijd o7 §oy\§o‘r(£of’ oui

= < Tno >o 3 (6.13)
where < ‘>b is the expectation value with respect to the
total wave function. Now consider the right-hand side of
the Equation (6.9). Proceeding the same way,it follows from

the Equation (I. 3) in the Appendix that



34
g Kd?‘ BNoéo'\' oe (_‘ <v7h»\é07 é"ez% Sd C d3NY - &; éo( oei‘i

= -3 WD (6.14)
Finally, the energy E,, is given by
Foe =8 Jd %6, L (T + Vet + Vs ) doe IERAE {}(6.15)
Under the assumption made in the BOA, the nuclear coordinates
in éieare very slowly varying. Therefore, the gradient of

Equation (6.9) with respect to Qf is

o g ¥ 3N, * -
Zic :-?E a*. . '}mz ‘ﬁ"e?”d e oe §

-

(6.16)
Substituting for 2EBce from Equation (6.16) into the expecta-
3 R/\

tion valueA<§i R: QELe)Fhe following is obtained in the
s~ IRE

Equation (I. 5) of the Appendix

$fale o®x &5 doe <Z e \ b, @aegw%c dx ,,e.

ir” B"
n R‘o ,;v‘ OT 06%
= %P NS Sh b (6.17)

Collecting together the Equations (6.13), (6.14), and (6.17),

the virial theorem Equation (6.9) reduces to

o ° <7 ,cv . ’D\/uj
<T;‘ >o :§5‘: <\/"‘“'>5“’-5.L4_1<"’“ 2R, ¢ >a)
=Y n;\'
e (6.18)

which is the expression for the virial theorem for the

nuclear coordinates in terms of the total wave function.
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2. Virial Theorem For Electronic
Eguation In Terms of The Total
Wave Function
The virial theorem in the electronic equation is given

by the Equation (5.23). The expectation value of the

electronic kinetic energy can be written from the Appendix
I as

ek R g BT LA g2 6 L G F
= <.

, (6.19)
/
where the expectation value is in terms of the total wave

function. 1In the same way the electronic potential energy

is expressed as

Ua?{d R Gy B0, E Ve 38, 8,78 [a2 8% déo,@w Do 80r3

= L Ve S (6.20)

Finally, in the Appendix I it is shown that the last term of
Equation (6.4) can be expressed as

A A R R DA 1) ) S A A

-~

N
=52 K 2he N

o E /o (6.21)
Thus Equation (6.4) reduces to
. N
< T p= —L N +?;Z< % V. > ’
g '319’ °
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which.is the virial theorem for the electronic system in
terms of the total wave function.
It is shown in the Equation (5.23) that for the ground
state of the system the center of mass energy
Ecm = o (6.23)
which gives

<‘7} > = o . (6.24)

Thus the total kinetic eﬂergy of the system is

TS = T+ <=7 +<77) (6.25)
= < Ty o+ TS

Adding the Equations (6.18) and (6.22), the Equation (6.25)

yields
— o N o D\/c
(T 5= R+ (X L) Loy
[ -] Ml e
. ) P
+ 4 R« Vye
,2;< DR > (6.26)
I.#p
From the Equation (I.19) in the Appendix,
)] ' \/o " D ¢ [
Z XN : D neg + \ m"' 3 V:Q — — \/MQ »
£ v A R (6.27)
o - -1 .
f{'P

Substituting from Equation (6.27),the Equation (6.26) reduces
to
_ —
LTy =73 <V %,

(6.28)
which is the virial theorem for the whole molecule.
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As seen from Equation (6.26) ,the virial theorem for
the whole molecule in the body fixed system does not include-
the pﬁh nucleus. If transformed back to the space-fixed
coordinate system, the virial theorem for the whole molecule
in Equation (3.14) is obtained.

Thus the virial theorem for the electronic and nuclear
equation can be combined to get the virial theorem for the
whole molecule. The equalities in this casé are approximate

and are restricted to the assumption made in BOA.



VII. VIRIAL THEOREM IN BORN-OPPENHEIMER
APPROXIMATION FROM A TRIAL

FUNCTION

The virial theorems are derived from generalized scaled
functions for the electronic and the nuclear motions. It is
shown in the next part of this section that no extraneous
term g ' 355 , which is obtained using the same scaling

ok 6,9,10

parameter for the electronic and the nuclear coordinates,

appears in the virial theorem for the electronic motion.

A. Virial Theorem for Electronic Equation
The electronic wave equation as obtained in the Equa-

tion (5.26) is

he & Cr° R°)=E., &.,.(L°, R?), (7.1)

He = T+ Ve (7.2)

Here T; is given by the Equation (5.12) and
(&) [}
\}eo = \’€€ ~+ \/\v\el (7-3)

o
where V,_, and Viw_ are given in the Equations (5.15) and

(5.16). The expectation value of the Hamiltonian with

IR
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respect to a trial function ‘¥, (X' £ is
e £, [He &
Ee[’@] = < e_{ e &> Eoe_ ) (7.4)
<o | e > g

Scaling the electronic and nuclear coordinates,a
scaled trial function is obtained. Since the electrons are
identical particles, the total function should be anti-
symmetrized for the electronic coordinates. The

antisymmetrized scaled wave function is..

5 ‘; 5 o >
a 2 N o e L fy En
\PC”’{ % = N’. ”)N GV qjetd\\ﬁq n /qN';-l ,%‘E\ %P,‘?P-\' %m.‘iw 2Dm ~ )r

(7.5)
where Gk, is the antisymmetrizer given in
the Equation (4.23).
The expectation value of the Hamiltonian with respect

to the scaled function gﬂaﬂ %isl3

3N *
-~ < d o e
Ee UM 3R] = J S Feqy He \1’1"’!@
D
SN g ¥ (7.6)
A T Fenz deo g

where 3 - % ii % Codxn
and ggo - %%l E;__- ,%p.‘ E\;q , 3P—H E:H b ) W %; ) .

The energy Eeiﬂ,ggjis a function of the scaling factors
and ?s . Since the nuclear coordinates are fixed para-

meters,the scaling factors §fs can be considered along with
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other parameters of the wave function and can be varied to
get a better value of the energy. In order to obtain the
virial theorem for the electronic energy, the energy in
Equation (7.6) should be minimized only with respect to the
scaling factors "L,“'fnw s

a E [ E ,Y)l ? B.DJ

¢
e
As is shown in Appendix J,

o:ij”?‘ e 2T, - I 2% Y

O
p(
X =y ~

:D ) O(:. ';"‘;N . (7.7)

which gives the virial theorem

s Z<r a\f >'7 . (7.9)

—0
L
Writing the explicit form in Equation (7.9) for the

potential energy Vf , Equation (7.9) can further be reduced

to

BV
<7E0>07:~’;<Ve Z<E 23 "’]‘ (7.10)

Xz
The last term of Equation (7.10) cannot be further
simplified.

The virial theorem is also obtained if 9 is orthogonal

P ad

to BEe : so the virial theorem does not necessarily imply

CR!

A
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minimum energy. However, if the energy is minimum the

virial theorem is satisfied.

B.. Virial Theorem For Nuclear Part
Separation of the electronic equation in the Born~
Oppenheimer approximation yields the nuclear equation given

in Equation (5.27):

e P - C Qo
H‘n @on(g ) Eo éov\ ~— ), (7.11)

where Eo is the total true ground state energy and

o

Ho = Ta® + Vo + Eoe . (7.12)
The nuclear kinetic energy operator1}°is given by the
Equation (5.13), and the internuclear potential energy
by Equation (5.17). For the sake of simplicity, assume the
nuclei to be distinguishable particles. The case of
identical particles, either bosons or fermions or both, is
considered in Appendix E but does not change any conclusions

reached here. Then the scaled wave function is
3 3 3

3 2 R . N o
R ='§i"'§$~%P:""€: o GR 5 Bt B 30 B )'

Tz

(7.13)
The expectation value of the Hamiltonian with respect to the
scaled function depends on the scaling parameters,and is

defined as 13



2] = % vy HoRE e

- 3Ch-1y « /7 F
S

(7.14)

If the energy is minimized with respect to the parameters

gi‘gl then from Appendix dJ,

n
N DE
o-é_ﬁ.———j

i=r i 'D%"
r‘;;‘-’ o
oo D00 Ve S R0, BE
= AL Ty - KRG ?>~Z (R =20 (7.15)
=1 w2 ? 1=} &E—" ’g
1P ‘tp
Equation (7.15) reduces to
Ty o LUy 4 LYK R P
< ko >§ N < hr\>§ = Z,:_: A QE:\- >§ ] (7.16)

which is the virial theorem for the nuclear equation.
The energyEeyﬁlis not a homogeneous function and is
not known except that it is obtained as a solution to the

electronic Equation (5.26). So 2Es cannot be further

QR
t
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simplified. Since the p~h nucleus is expressed in terms of

other nuclei, the Equation (7.16) is the virial theorem for

a system of (n-1) nuclei.

If the (n-1) ~-dimensional vector

3 = : T2, by by -
~ R | ‘ ‘ (7.19)

is orthogonal to the (n-1) -dimensional gradient
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- A -

. , \ , 2k
P 3
%' Bg)"i ’a%kﬂ 937\

e

QEQ — § QEg ‘QEO 2&

(7.20)

the same equafion as Equation (7.16), which gives the virial

theorem, is obtained. Therefore, the virial theorem is

satisfied at all the points where 3 1is orthogonal to @fi; .
2 =3

This proves that the virial theorem is a necessary but not a

sufficient condition for the minimum energy;

As shown in the previous section, the relationship
between the virial theorem in the BOA and the one for the
whole molecule can be obtained by formally scaling the
center of mass wave function.

In BOA the electronic energy is first minimized by the
Rayleigh-Ritz principle and then used as a potential in the
nuclear equation. Finally, the total enérgy of the system
is minimized with respect to the scaling parameters for the
nuclear coordinates. Thus the Rayleigh-Ritz principle can
give an energy lower than the true energy of the system.
Therefore, in general the total energy of the system cannot

be obtained by combining the energies for the center of mass,

electronic and the nuclear equations, but may be approximated

by the sum of these energies.



VIII. CONCLUSIONS

In this thesis the virial theorem is derived, by use of a
trial function with a different scaling parameter for each
coordinate. This is an extension of the previous result

7 for systems of electrons only. Also, the

obtained by Brown
virial theorem is obtained here for a general potential, and.
then as an example the Coulomb potential is considered.

A transformation to the body fixed coordinate system
is made to separate exactly the center of mass motion from
the total wave equation. Then in the BOA the electronic and
the nuclear equations are separated. The virial theorem is
then derived here for the first time in the BOA,using both
the exact and the generalized scaled functions in the body
fixed system.

Previously in the case of fixed nuclei a single scaling
parameter was used for all the coordinates to derive the
virial theorem, and so an extra term was obtained.6'9’10
According to Slater? this term was due to the force which
keeps the nuclei fixed. On the other hand, it is shown in

Section VII that the virial theorem can be exactly obtained

if a generalized scaled function is used for the electronic

44
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motion. Combining the virial theorems for the electronic

and the nuclear equations together with the center of mass
motion, the virial theorem for the whole molecule is obtained.
Of course, the equality signs in this case are only approxi-
mate. In general, the expectation value of the center of mass,
electronic, and the nuclear energies together does not yield
the total energy, since there is a coupling between the
nuclear and the electronic motions which is neglected in the- -
BOA.

A derivation of the virial theorem for the nonstationary
state of an exact wave function is given here for the first
time. Obviously, for the stationary state of a function no
time average is needed, and the virial theorem follows.

Besides the classical and quantum mechanical cases, the
virial theorem has been extended to statistical mechanics.14
The virial theorem can be used as a check when the energy is
minimized. Other related applications are in the references.
An application to the Hz+ molecule will be made in the near

future.



APPENDIX A

THE VIRIAL THEOREM FOR CLASSICAL SYSTEMS

For a system of electrons, the electronic kinetic

energy -, can be written as

~N .2, N .
2T =) M k= g Yo B ‘
K= =1 ' (A.l)

and so it can be used in Equation (2.3). A similar expres-

sion for the nuclear system is

"
P2 n .

2 - m R = . Ps

T - Z ’.—g“ - E\‘ ,E“ (A.2)

/.Z. 3

i

where T, is the nuclear kinetic energy.

The total kinetic energy of the system is
(A.3)

—

l = Te + T,

Therefore, from Equations (A.l) and (A.2) the total kinetic

energy can be expressed as

n

N “
AT = ¥ b o+ Yy R
£ - ~ (a.4)

For the interelectronic Coulomb potential of Eguation (2.17),

the gradient

46
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L,
Ve _ 1 et (k- %)
(5 * | v, 3
“ P SO
N
VN g .
i), < (h- k)
A*N;J 3 *
% - |
(a.5)
Equation (A.5) leads to the following result,
< 'av 1 e’ |
ee - —_—
Z ' Z v v = — Vee (A.6)
= & L3 Pt VS ”mpl

A similar calculation for the nuclear-electronic potential™

giv?s
\:ﬁ . (Dvﬂe .__.}, t?,\ ID\/y\e _ \/
o< =1 31}\‘ t=q 3%\4 - we,(A"?)

Q.}\ t g-\/"r\v\
ZM 3‘2’\ — ....._ \/'hy\ . (A.B)

Adding Equations (A.5), (A.7) and (A.8) one obtains

N n
N & . D\( RJ\‘ . D\/ .
LK+ Z ~ TSy = -V (A.9)

(A.10)



APPENDIX B

VIRIAL THEOREM FROM AN EXACT WAVE FUNCTION

IN QUANTUM MECHANICS

The operator Y - has implicit but no explicit time
MR

dependence. Taking the time derivative of the expeétation

d YM'PW ::9‘_— ASY“@*(Y‘;’PK é
dcrBys dl)dn o) & ]

3 ~NE* %
- Y 3@_ Yd- Y."Dd ’}é

The Schrddinger Equation (3.1) gives

i/n.a>:um"fd?’,r %[ b 01 2

d'l"\w o (B.Z)
Therefore, it follows that

d 0y <T Y, WD

C'“If' <‘2~( '{\):/> = LA ) - v ’:: ) (B.3)

and for the nuclear system a similar result is obtained

>

-
R By k) KT Ri B w1 (B.4)

o~ o~

e

Each component of the commutator[rn_hrﬁlis simplified to

obtain the expectation value.

48
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Consider first the x component of

xR > H1 =L X%k, ,T+V] ¢ (B.5)

z.[Xxhﬁ ) ?é;] é{-% [:XVYQ;;\/]CE

2

X |
= (%ebe By ‘%”;xPU*(XPxV‘VXPU@

2 % R
= (X« By -~ Fxx X«)k%’é\ycﬁ‘% X“LPKX\[—VP“’J@

= (R By = B X m By X Bt X R By

boXe Ry YRS 5.6)

SO

[:XNF&X; F{j é = [:E§ )W) E& 1 Ez_ci

2m

S

L

+ L \L,]

A‘ ’X,( [ ba(x y \/] @ * (B-7)
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Making use of the commutation relation

r- »
’LXK, P‘x)f] = L‘h 3 (B-B)
Equation (B.8) yields

\_xdﬁxxﬂH] & -oih Re d o+ %] mav &

27

(B.9)
Similar expressions for the Y and 7 components

give
P2
(reg o H ] 2t e w o ne [RY 14,
2m (8.10)
Therefore, for a single particle the expectation value of
Equation (B.1ll) is

Jho&oH ]y =2% (E e [T ¢ [R v ]e

2m

2

c2n (K v [ SR (R L) ¢

3
or ' (B.11)
P'L
([Eh,H]y s20dEy - (e XY
(B.12)

A similar relation for the nuclear system

R.. K _ : f{; - R R . oV
(LRE,n Ty - 2in U CE )

(B.13)
is obtained. Therefore Equation (3.8) becomes



* A 2N (B.14)
i‘L{N\CW’Po(\]:&<%>W ‘L’f‘ ’%“;/
A (B.15)
if G = ——:' ( rf( ! ffe ) )
o =

then one obtains

S ny = TN S
d - = d Mty = -—”—9—(—-3_ & 0;/' :
406y = 42 R = BE 4T e
So from Equation (2.7) the time average of Equation (B.16)
is zero

d :
a}<6‘>

i
0

(B.17)
and thus one gets,

~

= U
~ - N | BV N
; < ,ﬁ“ - b < Yoo o 20

VAR N *

o =

o~ D Yo /st (B.18)
For the electronic system, Equation (B.8) reduces to the

virial theorem

N M
~ ¢ . oV
= e

(B.19)
Similarly the virial theorem for nuclear system is obtained

—_—  _ L { Ry CRAERN
<I">_l<‘" ~ 5o 7

(B.20)
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Therefore for the whole system

N n
— < / —
\ .o 3V N L1 > R + oV >
~ L \= v /T <“ IR
(B.21)

LTy = 3 oy

’3§ - O , therefore

For a stationary state, -
3t
d Ry = O (B.22)
;; < A ,3.‘> - ) :
and the virial theorem directly follows
LAY
3V \/



APPENDIX C
VIRIAL THEOREM FROM A TRIAL FUNCTION
1. Virial Theorem in Simple Scaling For The
Whole Molecule

The virial theorem is obtained here for the whole mole-

cule from a trial function

AC N+N)

el = [aT R R, R

B(Nen)
e R, MR,

-1
(g, MR) % ,
(C.1)
where

Y:QE% ) of = by --- N

o '

collectively denotes the electronic coordinates and
B\': i[g\,’} i - v, --- 18]

denotes the nuclear coordinates, Making the transformation
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e = % , «=1, N
and
{
@5 = M E& ‘ Coo . n

to get the proper dummy index of integration, the Eguation

(C.1) becomes

N 5 n 9 >
]"T\l ( -'IF‘?-‘ . v - ;:\m 3 2)
—— <=\ =m B/Y\;\(I Y= 1 ! ’a[z(

A LT AP S -
{ Ja 0 d R R) R

(C.4)
E [7] is minimized with respect to %] to obtain
o - s ELM]
= M
AV N STR DY
= 2N T+ 3%t & AV 500 CX 2L
APt A
(c.5)
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) 3,.2‘ bz ~ ’DMA ’
C.6)
which gives the virial theorem
S N 2V
— ] v Y‘ : .?_-\q/ l—- Qa’ ‘ s
/< T >”'] - 3 Z"‘<:§' 2 VY >r»\+ 2 ’Z" < ~ PR >o—‘
X = o~ ! o~
: (c.7)

For the Coulomb potential given by the Equations (2.17),

(2.18), and (2.19),

Lo N
D2V STy Ve 4 N g e
” 8 Ya ~ 3 Yo - DY, !
L) o~ (2] A A= /\f
= (c.8)
and for the nuclear system

A IV ~ Y T R, . 2V

x ¢ — Q,\ » W A " k)
LY R T L Y SR T AT S
‘.:, »v:‘ 1= (\»A [ ~ (ch)

From Appendix A the Equations (C.8) and (C.9) become

~N

"BV QAI.Q—-—:_V
Z“Ty'; Z IR, ’

ol ~

S-

(C.10)

which gives

(C.11)
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2. Virial Theorem In Simple Scaling
For Fixed Nuclei

The nuclei are fixed so from Equation (4.17) the

expectation value of the electronic energy is

e oR] =3 [0 L, MR He Yo L%, R)S

§ o™ B ARk (L, MR

(C.12)

Making the transformation

/

— y

= "1k (C.13)
where the electronic coordinates are

Y o oo Y 5 O N ~ s

- W % (C.14)

Equation (C.1ll) reduces to
3IN ¥
ELo,R] =y e r dicx 1 R).

[’V\QTLJrV&Xf;;') BT el x“‘“ﬁ)}

3N % ' . ' -1

Pl e ey B )T
(C.158)

Minimizing E, with respect to ™ one obtains,

o = 2 ELQ[‘”\, E_l . .
" (C.18)
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From Equation (C.15) it follows
3N
o:%ﬂ xR T+ Ve (B RDT
ACSIRUN DN

[ty T MRy !, MRY R

i

3N * I
§jd YR )[‘N\\a*o}’ qm,?( )]

{%Q(.K,} W\E_) %

[N e R Bl MR

n

PR

Iz o (N\&\)

PO e (xR R Ry, me)]

E(dBZI(’Z@*(L'}G\E)%(Z’,”\\?)] E :)QO’\Q
CYI

N v PAZ
= Qﬂ<7e>+ <% Y, ) Z,
, = ! DRJ\
For Coulomb potential VC, from Appendix A it follows that

, (C.17)

N

\ v Ne '
L MOJ }i@ pang — Ve

X'z land

(C.18)



Equation (C.16) now reduces to

D = T 4+ <V o< R. o« Y Ee
an < Tey + < Ve + = %_J’ K o ( |
= ~ C.19

Expectation values in Equation (C.18) can now be expressed

in terms of the scaled function 4% to get

g} = g, . 2F
O — £ Te >°1 ~“+ \\/e>;,]-+ /Z.; ~ agj (C.20)
where
— A pa—
LT 5 = T2
i i (c.21)
and
<_N’> - ﬁ\ < N > (C.22)

t)‘l

are the expectation values with respect to the scaled
function %;? in terms of the expectation values with

respect to the unscaled function .
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APPENDIX D
VIRIAL THEOREM BY GENERALIZED SCALING-

From Equation (4.27) the expectation value of the energy

is

M
r—1
=
o
| SU—
il
—Ry
T e
L
[0 8]
=
o
W
S
=
(@]
9
2 (&%)
whJ
(2
(VY
{o
M
X
3
-
3
Ny
pan]
N

¥ -1
C O RIAE (L 3R T o)
where a,is antisymmetrizer and is defined in Equation (4.23).

Making the transformation

{1

4
v\ N
- N\NE( t ‘x:l’-"’Nﬁ

(D.2)
and

>
i

}

,%,Q; ) £ o 1,

A e -

~a

(D.3)

Equation (D.l) reduces to
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N L 2 1 N 2 2
_H _ X" H 2
[ ; amy\«x S’é};ﬂ- Zélm;gf J R’
= ra% i=1 ~N
N no R Rn
Vi, &2 2 ~ j
T (ﬂ N3 ’ gn)

Q{5 Tt 3 8, A%n&)}i

The Equation (4.27) is given by

n
Zﬂ“ii\ 12;72%“% s

(D.5)

which reduces to
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N 2 2 n_ 2 2
[ZZ\'%% S TP I W dg
N n
+ B oY + ST R JV
2;, " a(% 21 3 s&%)]

~1

x \lp(’yhﬁ o M 3R ""'%”R"r) %

: Uc/“’,gfc/”k’ ¥ R T4V
N h
(273 5 ] 000 55003
{ /f'};’cﬁ“jg’ Ry B d (mn\---,%nm?

+‘{J(J3N)j’d E’@¥(LI'E[)ET+V] O»\‘I/ %

(2

n

Mg s SRR e

(D.6)
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In order to simplify Equation (D.6) it is divided into three

terms denoted by I, II, and III. The first term is given

by

g h
T=§ [a®p a®"eh e*(xt, fh
— N "
'_.”:z: e .jl _ .Hl 2 3’2‘
LQ‘XZ am Na -’DY;(’L+ QZ T“ —%4 Spit
=i o Y N4
N v.! Y, m R’
e LRV
+Z i ’3("‘«' Z _'{* 3/ R: ]
o =) o :,;q) = - (
(l L}’)({‘Vl[‘ ! ‘Y\N Y,’:’ % R\I - —%“ Qn}?

(D.7)



o Rtz N 2
N s
ERRSENE P PP S D
= 2L Ty, +‘1<TM>%%
R OIEE EE L SN A
e = g = ERCE
(D.8)

(D.9)

Now for the sake of simplicity assume that all the nuclei are

The operator Gyoperates only on the elec-

distinguishable.
tronic coordinates ¥y , and is defined as
NoA ‘
- N
ﬁ = N > =D P (D.10)

P

(r-— )
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where the permutation P is

Y

A
applying P, g? becomes

(D.11)

P R = L

o~
(D.12)
But the primed coordinate is defined as
}
,\C" =" & /
A
and so the permutation operator P gives
Lo 7 Ny Q’)
P (7, 5,7, T ;3!)___&;/__'_;9 R -
A~ AN SN 'rL( -,
]
(D.13)

/ . . .
The r, are now variables of integration, and hence not

AN

differentiated. Now apply W% 2
i

7
Wﬁ%f%ﬂ(%ﬁ,-wm@,g’)
P
_m 2 e o ey s e
- /)?;3 307/5' “ O]‘*rw ”L% " /;7:%“”'%)'
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k! 2
= 4]@ bl s
3
’1% a(_1-

_ . 3 Py
= ~p ) 0@;

where o% is assumed to be

gives

/o1

- N / B
g Y. .
- % i "vf(p é YD(/
A e

§ ) 2 g/ oo -
ﬁ_a__. (PN

-~ (D.15)

nmvrﬁ i'R/)
) 5’%@ ’
p:e

N

N A
R{erf,%}? _ Lgp,g__zp@

B=1
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Since the nuclei are assumed to be distinguishable, the

transformation of Equation {D.3) makes ZR dummy variables

of integration and so

"
Z kS 5’9—%—, Pe =o (D.17)
(Y -
So from the Equation (D.9)
T = o (D.18)

The third term of the Equation (D.6) is
:%-fd3N):1 dghg/?*(X't,@]>h+V] @@%

% [ JBin c!3h

370

/‘{J%('K’li,@/>&»%(%ﬁn“ N ?

ifdgmxychE, lp%(xljgl)

EZ—’(YLw?'*’LA%

4 ‘ag j Q LLCW“\:‘»""W\NYL\),B’)}

(D.19)
Using Equations (D.16) and (D.17), Equation (D.19) reduces

to I = o (D.ZO)_

Now collecting together the Equations (D.8), (D.18), and

(D.20), the Equation (D.6) becomes



which leads to the

where

<7y
”L%

f]

),

"?,;
: ég;>
2R;

~—

(D.21)

(n.23)
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APPENDIX E
THE NUCLEI AS IDENTICAL PARTICLES

For the derivation of the virial theorem when the
nuclei are identical the following three possibilities are

considered.

1. When All The Nuclei Are Bosons
The generalized scaled function is obtained by anti-- -
symmetrizing the fermions and symmetrizing the bosons in

the trial function. The scaled function is therefore given

by

Vi
oY

‘J_D”],% - 7, ‘q?,\; g, o 'gh aA \_P(”I.ﬁ ‘--f"]N t;\v,%‘s, ‘.,.‘%ngﬁ)

2

(E.1)
where czoperates on the electronic coordinates and the

operator
P

VoA
/4£ = 7%? ;E:j (*'7 P i
o _P»v_h) (E.2)
operates only on the nuclear coordinates. The permutation

P is

‘ (\’). - .. m . .
Po= U G -.. [n) (E.3)
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The operators (1 and /d should be applied before making
the transformation to set the dummy index of integration..

Consider
A
A ng v e R
= \lp(/ﬂ{,\‘:{;""ry)r\lﬁlg/ ,@h Fo= Zn R

- v ! '
:\.//(,)/II/QI"'IWN):[’\VIZ R,VE"—""Z" E\“n>
}:’—1 g (E.4)
%K;gé' operates only on the nuclear coordinates and so
w
first applying it

NI Y = L P, R L 2])

?a F;»»-g RL:/\
?K g'fi' . D &2(47/&1_, fﬂ?Ntﬁ."/?{’—‘ml ’%_f’.,w )
- B E’ I ‘n
( i ) 8(‘%'“*“‘1) :
!
- R Re LR BY
> 5 B (g5
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A sum over k gives

n A -

3.2 PY¥Y =o -

K 33 (E.6)
K=t K

it

A
The permutation P can now be applied to the electrons

to obtain

65 7 ! n / ! ]
PR\P:&P(;I—'E‘f“".ﬁ—ﬁENtE-‘-.,,})I“"::_g_ﬂ__a{,h)-
<, o %i_l ‘%th
(E.7)
”L %;5 operates only on the electronic coordinates and,
&
as derived in the Appendix D, it follows that
N -
S, L PRE =0 .
o
2
oz OL( (E.B)

when the Equations (E.6) and(E.8) are combined and substituted

into Equation (D.9) and (D.19), then the second and third

terms of Equation (D.4) reduce to
ir =0 (E.9)
and
T =o
(E.10).

Thus as shown in the Appendix D the virial theorem follows.
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2. All Nuclei Are Fermions

The electrons and the nuclei should be properly anti-

symmetrized to obtain the scaled function

S
%/? :(7' —-'ﬂ'v é' _h%f 0 alklbm'll"" %w&’l))
(E.11)

where(lw antisymmetrizes only the nuclei and is given by

P (B.12)
(1---n)
Applying first F, and then 3% g%. y a similar cal-
K
K
culation as in the part A of this section yields,

n Al

L e -5?__ RY -0 . . (E.13)
k=t %’T

The proof of virial theorem follows as before.

3. Nuclei Are Combination of Both Bosons and
Fermions

If n, nuclei are bosons and n-n; are fermions then the

trial function should be antisymmetrized over all the fermions

and symmetrized for all the bosons. The scaled function is

therefore,



Yo

° E
By =03 Q4N NG ) g

The operator (L antisymmetrizes the electrons only and CL

operates on the nuclei and is given by

A

i f
= —— [—1) P

A
N+t -
where (e h)
Nyt - - - N
P2 = ( Lb\ - - - 7 i—n )
- (E.16)
The symmetrizer operates on Bosons and is
/ ‘ “dn
— —t I
I, >, dnR (E.17)
P,
where Cr-emn
i - - n, )
Pi = (L‘,, .. th
(E.18)
2N -
The permutation P is first applied to Y to get
N % %
PI\P :EP(ﬁqlt' - In Eﬂ,i—l E‘\'“'{L‘E&m l%“"‘m“\*‘ o %"‘ E\v\)
" (E.19)
Fork=‘.,‘?.,..‘~ hlj %K?

P
operates only on the bosons and so it can be applied to

and
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(E.20)

is obtained.

A
The operator P, interchanges the nuclei which are fermions

giving
roar
P;‘P‘ \P:@(rﬂlr'-'AﬂN\rN’g‘ E:;‘--- 3—- R*’m' - %‘— QV\’)
! n
(E.21)
For k = ns1. - n it can be shown that

.,
2—__'%3 $2,(5\£:O.
Kz=b

YN E.22
23 | ( )
1+
Finally P can be applied to get
N roA A
Zn\u'& R
o CaP (E.23)

Collecting together Equation (E.20), (E.22), and (E.23)

and again the Equation (D.9) and (D.19) give
I =5, (E.24)

and
1 = o . (E.25)
The case of an arbitrary number of different bosons

and fermions can be treated in like manner, and the virial

theorem follows.



APPENDIX F

TRANSFORMATION OF THE HAMILTONIAN TO THE

BODY FIXED REFERENCE SYSTEM

The Hamiltonian in the space fixed system given in

Equation (4.1) is

Ho= S o Ny
- — — \/
2m oy - 4;i7. 2m; 3 R?’ N ’

<= ! ~ I ~

(F.1)

where the potential V is given in the Equation (2.16) .
A transformation of the electronic and nuclear kinetic

energies is first made. Then it is shown that the potential

energy is transformed.

1. Transformation of The Electronic Kinetic Energy8

In order to make the transformation, consider a function

f in the body fixed reference

- o
/ :/(rlc;"’/r’\'o/B‘OI“')EP*!EPHt"" SY‘ ! C);
(F.2)

where the body fixed coordinates are given by Equations (5.3),
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(5.4 ), (5.6 ), and (5.7 ). Taking the derivative of f with

respect to rv ., one obtains for the gradient

N 1 n_ 5 e°

EE S S E ) (N S A S

L3 A 3 1 J R o I

- ﬁ:l ~ {=1 ~ -
{+P

2 C BT
N M 3C

(F.3)

° 3C
aj:gﬂ [b:i BIP I fx P=r "~ -
L
L2, ¥ ( 3§> n m- o f
IS 0 VO K m*>  9cC”
- 3 1m 3 3t 2K
= 2 S S T T
2 M 3 B¢ M 2 ¢

Summing over all « gives



N
L+ 2z > 2 L f
x M oy 3¢
i -~ <= | ~ ~
2
+ MmN 3 f ) (F.5)
z
M* o aC
Thus the electronic kinetic energy transforms to
N
2 X N
- 2 T
e _—“Lbl-:ﬁ_E‘ p
2 ) - ™ 02
PR 2 oy 32
o . |
+.-‘ZM§_,_ .o _.{—WN 31]
MR e mTag
(F.6)
2. Transformation of Nuclear Kinetic Energy
For K+ p the derivative of F with respect to
Re 18
h o
H:#’g_f_,w__.rzw 3 R
3&“‘ X 'Bl’? QEK A= EE; ¥ B
LFnHp
I T D U Y SN o
"B IR 3¢

(F.7)
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which reduces to
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(F.9)
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Taking summation over all X, k£p.

h N
“""2 ! 21
[N N
Py K 3 E"‘
K#Pp
"N N s N n
_ 5 e N2 +kay”ﬁ3__ PR
S YOV A ° N
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) o - K= i
k#P %"(.‘;P !
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To simplify Equation (F.10) consider each term separately.

The first term can be written as

K =1 o, 3= ~~
N2
R S L O I W11

M M2 Y oS g
K =i -~ 9(:#(3-:4 ~ £
(F.11)
The second and the fourth terms combine to give
e AN . n A
LZMKZ-L_}_,JJ_ _._Z_ZH_MK)T—’_E_,%C_
T e aRL M LU WS 3RS
K =i e 3= 1=y ™ ~ K=i [:‘):l -~ ~
K$rP {f Kp
2, O 3L
=-3 ) ) S
2 o =< e . (F.12)
mo A= (3:’ agk ’Bm(b
A FP
The third term reduces to
" N
— N7 2 T RENEEY
Lo MM, L dvE 9
K= [>=1 ~ s
Kap
= 3 g
- - A*lme)}f 2, 3
= (M ey 3”"; Y (F.13)
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and
2‘ D g s Lo 2 ) (ka)g D 9f
- My YRy IR M Mo 13RI
K=l ° o= - T ° K= [=i ~% K
KEp SV EN. K*p {+PK
ML F K
n
——(—,_L - e > } 3 S f
- mc mol aRo - QR; ’
e -~ F. 4
Lintp { , (F.14)
The following terms reduce to give
*L7 —Eq U, n a0
») e } : Al -+ T‘— (l— My @ {
L M * YR L Me) SRE
K =i © A =t oA =i K
J(ipr“ KEp
¥
L
- Z (')‘r'n —-— - T—%) 2 EZ (F.15)
A = A Me M, 'be
43P
and "’ - -
—_ 2}’V7K>—4 _’f_}___. :D__E__ ‘“¥*-2~:~ ’(-\__“ mk)'} g(‘_
Mm 2 C N M M, o
=1 S = ~ ‘agk k=1 QEK ESS
K¥p A3 P x Kt p
y
_ 2 My 5—7 2 ) 34
mm, IR, agi (F.16)
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Finally the last term is

Z” me XF __m.a_ma>23_
m:v_ '()CQ- M= m? 3 2 (F.17)
K= ~ -~
K+p
gives

o AN
0 X q—zld D-{D N

N
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", WS M, L= 3 R: M sc
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AEP (F.18)
and so
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Collecting together Equations (F.11), (F.12), (F.13), (F.14),
(r.15), (F.16), (F.17),

and (F.19), the following expression

for the transformation of the nuclear kinetic energy is

obtained
AN 2
ka DR;\?—
K= -~
~ N
_“'F?“E_L 5 rh ey 2 S
T 3T L M. st M I DN
> «:;gib XEPoy ~ ~
~N __Y\
2Ty o o L NT a2
M s 2C Mo /. 3R 2R
Pr=i - - LdF K=y /*{ ""TK
z(;ﬁr-#.p
N
Yﬁ(\ N e Mo, °F :}
+Z_—~ ™My ma) 3?:1 m> 'BCE
K o2 ~~n
nFp (F.20)

Now adding the nuclear and electronic kinetic energies given

by Equations (F.20) and (F. 6), the total kinetic energy in

the body fixed system is obtained

T = -hA 3 i

# S
LA _ s \
2 M 2 T(M+Wa\; ';)‘r;’-z'
- N | 5
.._:b.. g <__.]__.~;—-—— ’) ¢
+ a#ﬁ; s ﬂb> QJ: BXg
AN ~ _n,
SR CoE NGNS I S N
1vl<:r e Mo ngl Mo *K:lagg EE;
htp et Lk+p
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Thus the total kinetic energy in the body fixed coordinate

system can be expressed as

o 0
where
2
T <= -3 2
T M qs"' (F.23)

is the kinetic energy for the center of mass motion,

o .2 Nooa 4 2
ST GRS o i I Sl e By
2 ™ Mo 31Y,°* oM, s Yy Z;XP," (F.24)
oz ~ d#ﬂ;t -~

is the electronic kinetic energy and,

T"_-z&Z”(_l_.-L 2 ST, 2
no= » L ™Me Mo/ e aM, PRy IRY
=) — HEd= o~ (F.25)
KyAkp

is the nuclear kinetic energy.

3. Transformation of Potential Enezrgy8
It is shown that the interelectronic potential energy
is invariant but other potential energies change their form
because the pEE nuclei in the body fixed system is expressed

in terms of other nuclei. The potential energy is given

by

\] = Vee ‘\— \/V\e -\—- V'\"‘Y\ ‘
(F.26)
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In the space fixed system

Vee = “‘ Zﬁ%j

) (F.27)

Making the transformation to the body fixed system,

N
[+ o mn
LYo = B 2 e Re — Yp - 30 Ry
K= =i
(F.28)
or . o
IVe-val = I — Ypl (F.29)

The interelectronic potential is therefore

o A 2. ZAl 2 o
Vﬂ:\/QC = 711- E -——‘Q—-—“—— ot —%— Eo N ZVet
o< =y l E‘—I@\ o= ‘ ’Yw;( -

(F.30)
Thus electronic potential energy does not change form.

The nuclear electronic-potential energy is

\/ N N = é)__
he = — 4L ==, ,
€ ?ZZ\&‘E\ (F.31)

n
o n - .
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~ ~ Mo f?; SN 2 = £ A
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< s -
| Ri-Yal = [ RO- %) Axp (F.33)
For i=P we get
Q © Y. o | i Rr; ~ | n
— I _ - — . m Ko - _ ™Me R
Kp - [« e L r X o v Z, x Re
KEP
= Rp - % (F.34)
which gives
[ Be - ) = | RE-r°) . (F.35)
Therefore, for all distances
% - Rl =1 w-R (F.36)
50 ong obtains
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Thus the nuclear-electronic potential energy has a different
form in the body fixed and the space fixed references.

Finally consider the nuclear potential energy

ny
— \ b
\I)\Y\ - 2 z.x Z' e

2

f.ﬁd‘:{ \__VJ‘ - EJ\

(F.38)

For A, ? + P , the displacement between nuclei is
R:_R LS S S
T T T 7" —Mo?;;:mk R (F.39)
and so the distance is .
VR-RiL = LR =B for A hxr
~ (F.40)
When L =p 4 Xy the displacement is
e z 4 <)
Cr - 8 = _;}‘; TL;W‘K o = B+ fV\o Z;’W’n Q\c
kP (F.41)

and so the distance is

e - S _
\EP‘EJ\’ \Fe - %)), DIE T T

(F.42)
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nuclear potential energy now becomes

Y
th = “\" DAl "Z-_______‘-k 2) el
Y
9=t | Ra- Ry
P 2 i
—_ Y L -Z,;OZ_} ﬁu —t _[{ z-r Zp Z'l el
r¢}3‘|~ﬁ" Eﬁ \ j=i LE; = Ei ‘
WL 2 Jt P

or when expressed in the body fixed frame
>

n "

7 L N

Ve, = & 2. €; ¢ 1 Ze &; €

" > Z' l\?fi R\ T3 Z . .
o 188 o L Tomees - B

it e T

(F.43)

The total potential energy V thus is the same in the space

and body fixed references, but does not have the same form.

The Hamiltonian in the body fixed system thus becomes

(F.44)



APPENDIX G

SEPARATION OF ELECTRONIC AND NUCLEAR
EQUATIONS IN BOA

From Equation (5.25)

[—reo(,to) -+ 7;0(80) + \/0] éop_ ‘fon - Eo éochf.o)h

Dividing by i%etégn’ gives

L R [ & ) B ]
@oe @O”

LT[ B’ B (B 4V =E

4
éoe éoh (G.2)

which reduces to

ety &t RS 4+t TR LR £ 05 |

J
fe B, Fon

o

+ Vv = E, , (G.3)

The nuclear kinetic energy is

" . N
R S (NI I W Sl e
o e
> P Mo agk ;(hokiiz;aﬂx 2Ry
KEP K,
AT
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In the BOA the nuclear coordinates in the electronic wave
function iit are assumed to be slowly varying as compared to
the elecfronic coordinates, and therefore can be assumed to
be fixed. Thus the nuclear kinetic energy does not operate

on § and

(G.5)
Equation (G.3) now reduces to-
. ° 4 0 -
> .TCO (1:-)09_ + ‘-l_— ‘V\o §oh + Vﬁc * vv\e Al Vh" = EG’
3. g
(G.6)

The electronic equation can be separated to give

s & ¢ . o o ° ! o o
(T: -+ VEC -+-vhg >{§°Q_Lr‘ }:_ ) pous EOQ_E 8 ] @oe L: 'E )7
(G.7)
where Eoe is the electronic energy which is the separation

"constant."

The nuclear equation is then obtained from Equations

(G.3) and (G.7)

(T:‘D + vy\: - Ef—‘cﬂ ) éohc g“) = EO (§°Y\L %O ) . (G-B)



APPENDIX H
THE VIRIAL THEOREM FOR WAVE FUNCTIONS IN BOA

The virial theorem is derived here from a wave function

in the BOA,

1. Virial Theorem For The Electronic Equation

The electronic equation in the body fixed system is

R) = Epe £,0(L°18%).
(H.1)

The time dependence of a stationary state wave function

can be expressed as

A -
"fbo* o )
£) = & B, (XIRY)

] (<]

é

%

ce M

R
= (H.2)

N . o
The expectation value of the operator Zj,n~'§ with respect
¥=1

to the wave function é%e(X; ,i) is

l ~

<f’<5°*“’d>> = jc “ g, (xTETIH)
A=
[ Ye Pdo] éaec ta'g"*)?
%‘ g [,3/”)&0 550:? (,}:o,&clt) éoecr_olﬁbli)?

Wo ° 8 2 2)
fjkf&@ q&e}' ) dal xR %H 5
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Differentiating with respect to t, the Equation (H.3) yields

hg (S 05 Pys ([ Eeedll i g")(izﬁf:)@oe

W BY

~

N
SEL(Z R R Ee £ xne)3

PPN [ 85 (25T deCxgge) 2"

(H.4)

For the stationary state of the function cjéoe the equa-

tion of motion (H.1l) can be used in the Equation (H.4) to

get

N
o= § 58 X THITET (T B P &

(Z5n) g 17
S Ay d.d d.o3T

= § deN ioe He(z* Y" ‘ b4 ) éa?%i( o(i\’i@“e%‘l

AR R D A R TR I ST C R AP e

=t
(H.5)

where the hermitian property of the Hamiltonian is used.

o
The Hamiltonian H. in the body fixed system is given by

He = 7 4V (H.6)

where the kinetic energy is



2 A » < 2 S
TR () 2 L e
(H.7)
and the potential energy is
Veo - Ve: =+ \/,\Qe .
(H.8)

&5 N ,Yo Poé . .
In order to operate H, on Z fa 4y 4. consider each term in
“‘:l

H; separately. The first term is

g oAz 'D’:, S Jw Az Bb_d >
N
2 AN 2 N 2
:E_t E +abhs .2 2 7 &
y )YEL ? = BY’L~ gyc éce
Gl ) o (’_" o
2T~ o~ —
N ¢
kN P S S A B
L =‘,DY9’L anr _‘;Y_s'l- Ya o e
D(’A:I -~ B

(H.9)

Now consider the second term
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o Aot ~
O(#(}:/ ~
N 'Q ~N
r : -4 'B
N T N W N T
g 2 Y, SYp ¥ -~ DI@ 2Y,
O(:F(B:( -~ ~ A= -~

N NN
:‘IB[Z St k) W 2 2 T
1 3 Vo ngg ~ RYy aYp Y oe
“{:P:‘ v xXFRal 4o -~ ~
(H.10)
From Equations (H.9) and (H.10), we obtain
N — —
HQ[Z AR J $oe
"/:'
N
S BB (e b)0S 2 4% 2 e ]
O A I O e
=P o ) i & 0%
atl ’} '} ~ ] °
_—m[ 'BYQ'TQ'\‘Z EMA’%‘"‘?——D’?—“
Q -} d#{;:‘/ NP( }Mﬁ o/;ri,-ﬁ:l”_l ’Bn‘d 3:( ')”’.db]
o N -4 ra
+ Yi. 2
Ve[ ~7 3\;{"] % Cﬁoe
A=t ~ (H.11)
W [+]
Applying ) d@’ "”ag to e , the following is obtained
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~nN
I D W S P S I £
amon(#-,s:! - QMAD 'arp" QEJG]

LW )y S 2T 28,

2Y,°
(H.12)
Combining Equations (H.1l) and (H.12) the Equation (H.S)

gives.

oz ~ A=t o
i [da,vxa 5.5 &, %—4 1 (H.13)
which gives the result
o = T
AR R My

The virial theorem follows for the electronic egquation

in BOA. For the interelectronic Coulomb potential
N nJ
— e A

Veoe, = < \

(H.15)
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As shown in Appendix A

< Ve Ve
> o, Slee - H.
X = ” 3“3"(5 o ’ (5.16)

and the virial theorem for the electronic motion becomes

Y\
, o No2X, s V.
<Te‘_j>:~.\.<\/ge>+\ D /yzx-'é b

S by [N 2 A
A=y jz

Ty

2. Virial Theorem For The Nuclear Equation

Proceeding as in the electronic case one obtains from

1) . . c o
the time derivative of <‘é;# < MA o P >
A

- HFa WOE v B e

Md?"“‘éo 5.5 3 (‘

~r own [-RV.N

\S{d’éo";\) écv\ [L R, C P :J H CE-DV\ %

ll'

AP AR

(H.18)
where the nuclear hamiltonian is
M, = T a4V (H.19)
"
When in Equation (H.18) B and 2{; @ﬁo- f;c are

Sa
operated it follows that
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- o . ° )
o :UdBCh’)’\Boéo: [-27;’ - Ry . ’?5}/—‘-;-:‘,] $‘20\n %

Y e
Y

?/défn-fjgo éa: éon ‘é'l ‘

which gives the virial theorem for the nuclear motion

(H.20)

" ° (;)V,\b .
— / K Riv
I A M e 7
2 R- (H.21)
it P o
Expressing the potential energy V, as
Vo = V. + Eoe | (H.22)

Equation (H.2l) becomes

"“ .r\

o —_ ) ?, D‘vym _!_ .b, /DEOQ
’<Tn>—’5'z<ﬁ“ 5F>+;?_;<E“ —-_;)QA_C>'
~ ity ~

(H.23)

Since V,, is a Coulomb potential given in Equation (5.17)

. AL 2 o | a
Ve =k X ) BELS v ) el € ’
toig(= [v; - E:l L=t \ROQ ) 2y R
X, tEp txp T mp

(H.24)

its derivative with respect to R; for [ P is



Ri . Vma _ 2 Z RS (RE - RO) ZiZyg e
e 2 Ry” -1 \Rg - ORI 3
(f&,fl -t ~
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= © ot 3
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© Mg 2
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My Ktp
o n o 3
~ W\P Y] hd
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:Y_\, ™Ma Q EQE ~+ ;LVT Zr’nk R’C )J z_' zp E'l
- 2.- g ip
A= P ° AN -] 3
L4, p ‘&4 +_‘Y;F(k}:, my Rx ) l
kip (H.25)

When summed over all P A#b Equation (H.25) reduces to
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(H.26)

The terms in the Equation (H.26) can be rearranged by writing
out the double summations in terms of a single summation to

obtain,
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When terms in the Equation (H.27) can be combined, Equation

(H.27) becomes,

S

T

: N
]RL Ri -

h 2.
iz [ R (E i)

. =i ° " o 3
AR # 1Rw i (2 2k |
4 p

(H.28)
Thus for a Coulomb potential the virial theorem for the

nuclear equation becomes

CTS = cL VLY L TR By
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APPENDIX I

RELATION BETWEEN THE VIRIAL THEOREM IN BOA AND

THE WHOLE MOLECULE IN BODY FIXED SYSTEM

The virial theorem in nuclear and electronic equations

is expressed in terms of the total wave function.

1. Virial Theorem With Respect To The Total Wave
Function For Nuclear Eguation

From the expression in Equation (7.24) can be written

IN o * L o
Y d3~C~ d I: @OT éae < T;‘ > i70‘]’ <fo€
fa’c Mo 8 80 £ 4

—eT °oT R

—
S

3 o * .
ok atrg feotarge)

[ ar 7 6, 11 e 6,77

(1.1)
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Assuming that the nuclear coordinates in the function ‘goe(l’.bg")

are slowly varying, and can be considered as fixed parameter
with respect to the variable of integration ﬁ"}

Equation (I.l1l) becomes

fa3cdee g, .7 1oy 4, due 3

* *

3 - - - -1
? fdg,.g d NIO 4207 @oe @01 Cﬁoe%

’BCY\ ~D

§Td% ot a*R7V6. 4ol o T E €0}

net) - ~ -
A A PR NI Sl Sl U SU S S

(I.2)
where { \/o is the expectation value with respect to the total

wave function, Similarly it can be shown that

S d™rogs dod XT3Nl > &, .0 F

§Jd%,§ dgNIG éa‘.'* @ot "a( aG ?’\
_ % ngﬁ d?NXc,dgu D dl”{oe QM( ) OT Cioe ‘ﬁ,m?

3 WN - oalnd ¥ ¥ -~ ¥ -
% Sdg d V. d Bc @o_‘_ @oe @oh (EOT C.Eoe to\n§

(!

(1.3)
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Since the nuclear ccordinates in are assumed to be
cE.

fixed parameters, the Equation (I.3) can be written as.

(Y Ry

iz o -:
TP ~
“%S d’&(n-l)&odBNr‘e ?b,,t 50: ST wa ) avhf &,c thg
- - iz R
i:#p ~
an=y) -\
i jd R dBNYDC.Eo:— 40;_ éoe @OV\? s
(I.4)
d - \
and so o NEee \ on%éJ'dgﬂ(; d’lv‘” @"OT%

n, -3

- Z < RJ: . fb\(“e >° .
"-:‘ - —BRJ‘D (I's)
—‘FP -

From Equation (I.2), (I.3) and (I.5), the nuclear virial

theorem in terms of the total wave function is
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2. The Virial Theorem In Terms Of
The Total Wave Function For
Electronic Equation

The expectation value of the electronic kinetic energy

is

[ d*xe T g (I.7)

Equation (I.7) can be expressed by

T[d% ok 6% B8 < Eor dun)
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n - ¥* © ~1
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= LTS >, (1.8)

™~
Similarly the expectation value of the Z(Y"‘o' Ve ) can be
2N
expressed as -
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N o’ 'B\;eb
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For a Coulomb potential it is shown in the Appendix A that

N

')
o e i P
Vee - _-‘. Z € — % Z <
> okpa | N ova | agpst | = Yo
= Vee, )
and therefore
N 0 o
Z .Yp(a » ;Vpe — — \[Qf. »
o= | BZ" ‘

The virial theorem in the electronic coordinate for a Coulomb

potential reduces to

N P
(Ty, = 5 ey, + § AR ke N

(I.10)

Adding Equations (I.6) and (I.10) the following is obtained

LT, + < Te"> = L <Ver = & <%
N v v
+ X o ne
b 52; - 3 Y. §>0
n 6 5}
R. . D2Vie
1 SR )
> g N},A°> - (I.11)
Fap

Since in the ground state the center of mass energy is zero,

it follows that
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< [T >a - © ?
(1.12)
and so

LT, + <Te"> = <T7°>

9 s

(r.13)

where T is the total kinetic energy of the system. Equation

(I.11) becomes

LT°> = L &Viey, —L vl

2

o n °
+ L Y 2¥ne 1 Ry, DVae
;‘g<“d a@°>°+)§<~ 3\9‘2
T:':r ~
(1.14)

which will be shown to reduce to the virial theorem. The

gradient of \A: with respect to the electronic coordinates

is
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Equation (I.15) gives

Ye, 3\/’ oy N " r . Y RS 2
UEAE A oy BRI AL DL

(I.16)
Also the gradient of V: with respect to the nuclear coordinates
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Adding (I.17) and (I.18) to obtain

~ N n
R ) D\/ e ARV o
n o, re 4. Ry v Zhe
Lald .‘?{ 'bvu" Z ~ ?Qf. — \/V\ﬁ— L
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Thus Equation (I.14) reduces to the virial theorem
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APPENDIX J

VIRIAL THEOREM IN BOA FROM A TRIAL FUNCTION

1. Virial Theorem for Electronic Equation

The expectation value of the electronic Hamiltonian

with respect to a scaled function given in the Equation

(7.6) gives

e .
FlN3RT = 3 f R g

* o o Py ‘ °© " o
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r 2

(J.1)
Making the transformation

[
0’“\/@—;‘& o = |-
one gets
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The Equation (7.7) now can be expressed as
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Following the derivation in Appendix D it can be shown that

3._. G lljt - o '
M, (7.4)

Thus Equation (J.3) becomes
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For V, = Vee 4 Vhe the derivative is
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o /}'\d =) Na oz 0’\«
(J.6)

For the electronic Coulomb potential given by Equation (5.15)

LS >
—_ e
Vee = 3 L_: Yf Y’ .
¥P= e )
Mo "'TF’

(3.7)



50 the derivative is
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Interchanging - A

the Equation (J.9) gives
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and +-=> « in the second term,
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For a general electronic pectential the derivative is

- v, v
Zu'cv]ﬂ_i&le_‘e_: - 5 l:‘i' 3\/“(%:,—‘-—- i’clriw) ,
T A S 0E)

e (J.11)

and

N . ) Yo o
7 Mo Dme o Ve (H o F iR
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(J.12)

where th is the nuclear electronic potential energy.
Substituting in Equation (J.5) from (J.11) and (J.12)

the virial theorem follows
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2. Virial Theorem For Nuclear‘Equation

For a scaled function the energy in Equation (7.14) is

3n-n 3 = ™~
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For % : Q.,‘ - Ri A
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(7.18)

the Equation (J.18) reduces to
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Thus the virial theorem

is obtained.

For a Coulomb potential it is shown in the Equation
(H28) of Appendix H that

i

Z {Q: 2 FD\/MO“ - \’/vm

SRS (F.24)
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so the Equation (J.24) becomes
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n AE,
{Te ) P Ve + L3 Rargg = o,
iz}
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R
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| 4}
o | R. - F, M.
Ty = -4 V> ‘“‘fz : < R fl /
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i 4 'éve\
<TYy = ¢ 22;» <% v /¢
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\/v\ = \/h,\ + V\,\Q .
If the nuclei are held fixed by the external forces, then

£ T,y =0 , and the two terms on the right side
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In Ref. 6, Lowdin uses a scaled wave function in which
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—_ ia p 9:‘
<l‘e>+2<\/e>+z B-;};:O:
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where the Jacobian of transformation
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Thus the Jacobian of the transformation does not depend
on the variables of integration. The expectation value
of an operator A in the space fixed coordinate system

is
3N 3N sy .
Ay Lrrd R NR) AR SCXR)
"R (Y, RY &, Y )

~
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o B e r Rt AL ) 6,
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r 3
<A> _ T Jd&d
N In-n) . .
T [ded yrde ¢lcer 8 g.0c. %87

The Jacobian of the transformation cancels out.
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