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the electronic and nuclear motions, using exact as well as 

trial electronic and nuclear wave functions. 

If only a single scaling parameter is used for the 

electronic and the nuclear coordinates, an extraneous term 
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kinetic energy to the radius vector dotted into the force. 
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I. INTRODUCTION 

The virial theorem,which was originally proved for 

classical systems by Clausius,"®" relates the time averages 

of the kinetic energy to the virial of force, i.e., the 

radius vector dotted into the force. For a homogeneous 

potential, like the Coulomb potential, the virial is pro-

portional to the time average of the potential energy. With 

the development of quantum mechanics, Born, Heisenberg, and 

Jordon^ derived the quantum mechanical virial theorem only 

for the exact solutions in stationary states for homogeneous 

potentials. An attempt to derive the virial theorem from 

3 
the variational principle was first made by Fock, using a 

4 
scaled wave function. The case of a molecule in which the 

5 6 

nuclei are fixed was considered by Slater. Lowdin used a 

single scaling parameter and minimized the energy with respect 

to it to obtain the virial theorem. Thus Lowdin showed the 

importance of the connection between scaling, the variational 

principle#and the virial theorem. For a system of electrons, 

Brown^ used different scaling parameters for each electronic 

coordinate in a trial wave function, antisymmetrized, and 

varied the energy to obtain the virial theorem. 



In this thesis the virial theorem is further extended 

to a whole molecule by scaling each electronic and nuclear 

coordinate in the wave function separately. Since the energy 

is minimized with respect to the scaling parameters, the use 

of different scaling parameters will give a better energy 

value. 

In order to obtain the virial theorem for a molecule, 

8 
Froman's treatment of the Born-Oppenheimer approximation 

O 

(BOA) to the body fixed system is made. Froman introduced 

a transformation to the body fixed system in order to separate 

the center of mass motion first, and then made the BOA to 

separate the electronic and nuclear equations. Froman's 

method of making the BOA is better than the usual approach, 

because the center of mass motion for the whole system is 

first separated out exactly. On the other hand, in the usual 

BOA the center of mass and nuclear motion is separated after 

the electronic motion. 

By using a true wave function in the case of fixed 
5 

nuclei in a molecule,Slater obtained an extraneous term in 

the virial theorem for the electronic motion. Also, if the 

same scaling parameter is used for the electronic and the 

nuclear coordinates, the same extra term appears in the 

virial theorem for the electronic m o t i o n H o w e v e r , it is 



shown in this thesis that no such extra term is present 

if the electronic virial theorem in the BOA is derived by 

scaling each electronic and nuclear coordinate separately. 

Finally, the relationship between the virial theorem 

in BOA and the virial theorem for the whole molecule is 

shown. 

Another new result obtained here is the derivation of 

the quantum mechanical virial theorem for a nonstationary 

2 

state. Previously it was derived only for the stationary 

state. The virial theorem for nonstationary state is the 

quantum mechanical analog of the classical virial theorem, 

and it relates the time average of the expectation values 

of the quantum mechanical quantities. In the stationary 

state of the system no time average is needed and the virial 

theorem is shown to follow directly. 

In the next section the virial theorem for a classical 

system is reviewed. The quantum mechanical virial theorem 

for a nonstationary state is obtained in Section III. 

In Section IV the simple scaling idea is developed 

first and Lowdin's derivation of the virial theorem is given, 

The last part of this section deals with generalized scaling 

and the virial theorem for the whole molecule. 



In Section V the transformation to the body-fixed system 

is made. The center of mass motion is first separated out. 

Then the nuclear and electronic equations are separated in 

the BOA. 

In Section VI the virial theorem for the electronic 

and nuclear motions in BOA is obtained,using the exact 

electronic and nuclear functions. The relationship to the 

virial theorem for the whole molecule is shown. In Section 

VII the electronic and nuclear virial theorems in BOA are 

derived by generalized scaling of the electronic and nuclear 

trial functions. 

The conclusions are given in Section VIII. The details 

of the calculations are in the Appendices. 



II. VIRIAL THEOREM IN CLASSICAL MECHANICS 

The virial theorem of Clausius was derived for classical 

systems."'' It states that the time average of the kinetic 

energy of a system of particles is equal to the virial of 

Clausius for the internal and external forces acting on the 

particl'es. For a system of N+n particles, N of which are 

identical and n of which are different, the derivation of the 

virial theorem follows from the fundamental equations of 

motion. This system is the classical analog of a molecule 

with N electrons and n different nuclei. Newton's second 

law gives . 

t - F 
~ (2.1) 

where P,-7,is the set of momenta, <K - ^ y, 
/%* [ x** A j f

 ) ~ 

The position vectors of the (N+n) particles are V; - £ Y; j?} R 

where runs from 1 to N and i from 1 to n. 

The forces are F= ? , Fv ?. and include the forces of 
X V - ] tVK

 } ^ V 
constraint and internal forces. 

Consider the equation of motion for the quantity 
iN 

& - (2 .2 ) 

The derivative of G with respect to the time is 



r* N 

<*& = y v. • ^ + 2 J f,. 

*'• 

(2.3) 

It is shown in the Appendix in Equation (A.l) that the first 

term on the right side of Equation (2.3) reduces to twice 

the "electronic?' kinetic energy. 

' (2.4) 
j r K. • & = ^ -

o<- I 

Using the equation of motion (2.1), the last term of 

Equation (2.3) becomes 

N f4 

Y ^ ~ ^ ' Yc* ' 
Z _ - ^ rf~ - v - <v-

(2.5) 
C\~| cx~( 

Thus Equation (2.3) reduces to 

ci G • _ 3. T e y- ^ - y* . 
dU - ~ (2.6) 

The time average on the left side of the Equation (2.6) 
i s © 

Lim J _ / d-t d & = Li™, ^Ce) - G.£o)_ ^ 

0_> 00 © J d> d 

d (si 

d+" 
O (2.7) 

which vanishes if the function G is periodic with period &, 

or if G is bounded. Therefore, Equation (2.6) can be 



averaged over all the time to give 

17 = - Y 21 § ' & , <2-8> 
^ K'- / 

which is the virial theorem in classical mechanics for a 

system of "electronsThe quantity on the right side of 

Equation (2.8) is called the virial of Clausius. 

A similar expression for a system of n "nuclei" is 

= - i S £ ' 5 ' (2-9> 
t "HZ / 

where the "nuclear" kinetic energy is 

X - V " Rl ' P{ 

n S ZW AA 

/ - ! 

The virial theorem for the whole system is 

N 

t - - - L 7 " * - $ , 

' J A- Z. -J ̂  ' 
cXix ! / ~ / 

where the total kinetic energy of the system is 

(2.10) 

(2.11) 

- ~r +. T ( 2 . 1 2 ) 
- >e r- 'n 

Further, if the forces and F. are derived from a 
•v-v /vn 

potential V, then 

£ = - 3 ^ , R- = - l y . 

~ ^5; 'gf (2.i3) 

and the virial theorem becomes 

f - - i f y R; 
I — t / j ^ a. /—• ^ ^P 2. Z—j ~ a 4-^ 

p( ̂  | — i 

(2.14) 

For a Coulomb potential this gives a simple relation between 



8 

the time averages of the kinetic and potential energy [see 

Equation (A.10) in the Appendix]. 

- - V . (2.15) 
1 

The Coulomb potential V is 

V — V e e +- V h e -V VhK) , (2.16) 

where ^ ^ 

~2/Lj | V; - Vp f 

is the electronic potential energy, 

(2.17) 

v.. - k T 

N n_ 
H,- e 

1 5 " Bil <2-18' 

is the nuclear-electronic potential energy, and 

n z 
v - i > z ' ^ 

2 \ ( 2 " 1 9 > 

is the nuclear potential energy. 

In going over to quantum mechanics, all the quantities 

will be replaced by the corresponding operators, and the time 

average of the quantum mechanical average will be taken. 



III. VIRIAL THEOREM IN QUANTUM MECHANICS 

FOR THE EXACT WAVE FUNCTION 

The virial theorem in quantum mechanics was first 

2 

obtained for the exact wave function in a stationary state. 

It relates the expectation value of the kinetic energy to 

that of the radius vector dotted with the gradient of the 

potential. 

For a system of N electrons r, . , . of equal mass m and 

n nuclei R^. • • R n having masses vr\.,the time-dependent 

Schrodinger equation is 

H a F ' (3.1) 

where t\ is Planck's constant divided by 2 Ti and <J is the 

exact wave function. The Hamiltonian is the sum of the 

kinetic and potential energy operators 

H = T -V NJ . ( 3* 2 ) 

The kinetic energy operator is the sum of electronic 

and nuclear kinetic energies 

T = T e + T n . (3.3) 

The electronic kinetic energy is 

N +>x N 2-

T . n"""7 "p> <r-—1 -V- 0 
£ - 2 - , ^ - = ^7~x 1 (3.4) 

oi= I 2-TO eK = > O 
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where 
IP - ±L J t 
* nf ~~~~ » 

IV* (3.5) 

is the momentum operator. The nuclear kinetic energy is 

N d x ^ ~l -> 

T = T JL = j L 
U , -TT- 2 W ' * 1 ? ' (3.6) 

where the momentum operator for the 'i tv> nucleus is 

Rr = i (3-7) 
~ i d&t 

rvv 

The potential for a system of charged particles dealt 

with here was defined previously in Equation (2.16). 

For a derivation of the virial theorem consider the 

expectation value of the operator , |a and . P; . The 
^ V V / V* 

time derivatives of<( Y* • and ^ & • FV̂ >are given in Equations 

(B.3) and (B.4) of the Appendix to be 

d_ < V« • & > ft* , H > 1 

cUt ~ ~ (3.8) 

and . 
JL < & • • § > = 1 ^ ) < C & - & , > . ( 3 - 9 ) 

where the angular brackets denote the quantum mechanical 

average with respect to the function <$ and the commutator 

bracket [A, H] is defined by 

I-A, H I - A H - H A . (3.10) 

Applying the commutation relation 

C *' ^ (3.11) 
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to [ ( ̂  ] Equation (B.16) in the Appendix gives 

<*<$> = d Y<M !h}=2Y<_£ y - y / Y „ . ' w \ 

<** 4* <* = . ~ ~ #-> *T, ~ 9 ^ / ' (3.12) 

where G is given by the Equation (2.2). 

If the time average of this equation is taken with the 

restriction that the expectation value of G is bounded for 

all times, the quantum mechanical virial theorem is obtained 

for the general nonstationary state. From Equation (B.21) 

in the Appendix 

o - > = ± £ - < s ^ - ! - > + I £ < % . - > 
n? r,, / 7 (3.12) 

which is the virial theorem for the whole molecule. 

For a stationary state no time average is needed and the 

virial theorem, as obtained in Equation (B.22) in the Appendix, 

is 

^ n 
K, . 5V ' < T > = 4 Z < 

* M ' c* T ^ ' 

(3.13) 

'#< 

a j x 'vv 91" 5 t ~ ' 
In the next section the virial theorem for the energy 

calculated from a trial wave function is derived. 

For a Coulomb potential, from Appendix A,the virial 

theorem becomes 

< T > = < V > . 

(3.14) 



IV. VI RIAL THEOREM FROM A TRIAL WAVE FUNCTION 

In the last section the virial theorem from an exact 

wave function for both the stationary and the nonstationary 

states was obtained. The stationary-state Schrt5dinger equa-

tion is 

H § = E. <6 

(4.1) 

where E 0 is the true ground state energy of the system. The 

Hamiltonian is given by the Equation (2.14). 

Many times the exact wave function of a system is not 

known. Then the energy can be calculated from a trial func-

tion. If •, g , i s a trial function, the expectation 

value of the Hamiltonian is defined by 

p _ 

C - • 

< ^ | ̂  > (4.2) 

To get a better energy value, Hylleraas^ introduced 

a scaled function and varied the scaling parameter. A trial 

function is said to be scaled if all of its coordinates from 

a fixed origin are stretched or compressed. The wave function 

can be scaled using a single scaling parameter or different 

12 
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scaling parameters. The virial theorem will be first derived 

from the simple scaling and then from the generalized scaling 

of a trial function. 

A. Simple Scaling 

1. For The Whole Molecule 

A simple derivation of the virial theorem was first 

O A 

obtained by using the simple scaling concept. ' If all 

the coordinates are multiplied by a factor -rj , then the scaled 

function is 

<y - -• .Ifr, . -- - • °1 '<) . 

^ (4 .3) 

For the scaled function (4.3) the expectation value of the 

Hamiltonian for a Coulomb potential is given by 

E [ ,r|'] ^ < ̂  T> -hi <V>. (4 .4 ) 

< % I ̂  > ' 
If the energy is minimized with respect to ̂  , then 

o -r. = JL. V > 1 (4.5) 
d °1 "3 «\ / J 

where the expectation values are with respect to the wave 

function of Equation (4.3) with °] =1. It is shown in 

Equation (C.7) of the Appendix that the Equation (4.5) 

yields the relation 
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N « 

^ T \ ~ \ ' (4.6) 
' ©<= I 1 /=./ 

which is the virial theorem. The angular brackets y in 

Equation (4.6) denote the expectation values with respect 

to the scaled function. For the Coulomb potential given in 

the Equation (2.16), the Equation (4.6) becomes [see Equa-

tion (C.ll) in the Appendix}, 

<' T \ - - J . < \/\ ( 4' 7 ) 

\ /tj 2. \ / ,yj 1 

which is the virial theorem first obtained by Lowdin.^ 

The parameter is obtained from the Equation (4.5), and 

xs 

on - _ i < V > 
/ — — — at minimum. (4.8) 

2 < C T > 
Eliminating 'Vj from Equation (4.5), the minimum value of 

the energy is given by 

<v>2 
— x~ • (4.9) 

< " 

The energy E[rj] given in Equation (4.4) can be expressed as 

2 

E L U = E m : n . t < T > -rj + 
T> 

(4.10) 
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The curve of E against ^ is a parabola, and for o-j given 

by Equation (4.8), a minimum energy is obtained. The virial 

theorem is then automatically satisfied. 

On the other hand, if our trial function is not a good 

approximation to the exact wave function, then the energy 

thus obtained will be very much off from the true value. 

The scaling will, of course, improve the energy value. But 

the energy will have to be minimized with respect to other 

parameters of the function. Thus variation with respect to ̂  

will not give a good value of the energy, but the virial 

theorem will still hold. 

Therefore, the virial theorem derived from a simple 

scaled function is a necessary but not a sufficient condi-

tion for the minimum energy. 

2. Simple Scaling For The Case 
.of Fixed Nuclei 

In the case of fixed nuclei the nuclear coordinates 

R — Ri ̂  i. , n, a r e t o k e held fixed by some external 

forces, and so the nuclear kinetic energy is zero 

\ (4.11) 

and the nuclear potential energy V n n is constant. Therefore, 

the Schrodinger equation of the previous section reduces to 

~ ^oe £ • (4.12) 
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The electronic function is a function of both 

the electronic and the nuclear coordinates, but the nuclear 

coordinates are fixed parameters. Therefore, the electronic 

energy E*oe( H ) depends on the nuclear coordinates, and 

E~ ~ E — V (4 13) 
L-oe o ^n. 

The Hamiltonian is 

H e = \ . (4.14) 

The electronic kinetic energy T e is given by Equation (3.4) 

and the potential energy V e is 

Ve. •= V e e +• V „ , (4.15V 

where V e e and V n e are given by the Equations (2.17) and (2.18) 

For a wave function scaled in both the electronic and 

nuclear coordinates 

£>j = ^ - - '-n s."), (4.i6) 

the expectation value of the Hamiltonian is 

f f n i = 1 h'e 1 y ^ Eoe • (4.17) 

< ^ l ^ > 

Minimization of the energy with respect to tj leads to the 

relation obtained^rom the Equation (C.19) in the Appendix: 

n 

"7 'V fe ^ ' (4.18) 
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6 9 

Lowdin's ' form of the relation is obtained for the 

diatomic molecule with internuclear distance 

R - 15, - (4.19) 

•JEc _ Zt, 
3 1?, 5 8, 38 (4.20) 

' X .'vv 
r w *yC 

Equation (4.18) then reduces to 

S + < Ve \ H- R » 2Jk_ - o (4.21) 
i "J ^ 3 £ 

/ V i 

The extraneous term P • 5jE§ in the Equations (4.18) and (4.21) 
.. ~ 2 £ 

appears because all the electronic and nuclear coordinates 

are scaled in the same way, using a single scaling parameter. 

According to Slater , this extra term is because of the force 

- ^ which holds the nuclei fixed. If all the 
^ & 

coordinates are scaled differently, no such extra term appears 

11 
in the virial theorem for the electronic motion. 

B. Generalized Scaling For The Whole Molecule 

In the derivation of the virial theorem the energy is 

minimized with respect to the scaling parameter. Since the 

Rayleigh-Ritz principle gives an upper bound to the energy, 

a better value of the energy is obtained if all the coordi-

nates of the trial function are scaled differently. Using 
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this generalized scaling idea. Brown'gave the proof of the 

virial theorem for a system of electrons. It will now be 

extended to the whole molecule. For the sake of simplicity, 

the nuclei are assumed to be distinguishable. Then the 

scaled function is obtained by properly antisymmetrizing the 

trial function for the electrons. The case of nuclei as 

identical particles, either bosons or fermions or a combina-

tion of both,is considered in the Appendix E. Using a set 

of scaling parameters JJ _ ^ TJ | for the electronic coordinates 

and | ̂  ^ | ^ for the nuclear coordinates, the scaled 

function can be written as 

£ =. "]'• • ̂  f - •• f a 3„1").<4.22> 
nr u N /, 

The antisymmetrizing operator is 

a = ^ P - <*•»> 
p 

A 
where the permutation P interchanges the r's only and 

^ r* ' s. not the 

The expectation value of the Hamiltonian with respect 

to the scaled function is 

E m , ? ] = 

^ y ( 4 . 2 4 ) 
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Variation of fzL^hlj with respect to all the parameters 

*?j and jp gives a set of N+n equations 

k E C l ' r j =° . •< - n , , , 
3°l< ' (4.25) 

and 

~ - o t r - l, — - , n (4.26) 
^ I- ; 

which determine ^ and | 

If the Equations (4.25) and (4.26) are combined, it 

follows 

£ x M + II ^ ~ =• ° • 
;.l 3 If (4.27) 

In Appendix D it is shovai that this condition implj .ies 

•=<=/ - / . , ~ 

which is the viria.1 theorem for the whole molecule. If V 

is the Coulomb potential of Equation (2.16), Equation (4.28) 

reduces to the form of the virial theorem 

C - ) , ! ~ ~ x ( V ^ , (4.29) 

giving a relation between the expectation values of kinetic 

and potential energies. The 7j and ^ used in Equations (4.28) 

and (4.29) are solutions to Equation (4.27). 
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If the N dimensional vector j ̂  ? is orthogonal 

to the N-dimensional gradient 3_F _ 5 2. and the n-

*VV 

dimensional vector ? — ? ? ? i-s orthogonal to the 

<-v* ) J i ^ 

n-dimensional gradient 3E_ 5" J_F ? , then the same equa-

n =
 Uh * 

tion as in Equation (4.27) is obtained: 

• | | - + i • f x = ° - ( 4 - 3 ° > 

n** /—vv 

which leads to the virial theorem. Thus the virial theorem 

is obtained at all the points where ^ is orthogonal to 

5 £" and T to 2JE_ as well as the minimum of 
9 •v -v 3 1 

.-V, - v » 

the energy. Therefore, the validity of virial theorem is 

a necessary but not a sufficient condition for the minimum 

energy. 



V. BORN-OPPENHEIMER APPROXIMATION 

In this section the Born-Oppenheimer approximation 

1 2 

(BOA) is discussed in order to separate the electronic 

and the nuclear equations. 

To make the BOA, start off with the total wave Equa-

tion (4.1) in the space fixed system jr - ̂  Y* | ^ 

H f 6 =r Eo §o ) (5.1) 

and express the total wave function <3r>0 as a product of the 

electronic and nuclear-translational functions, 

§ - 6 ( V , fO <5 1 R ) . (5.2) 
O 1 ~ / Xo n ~ 

In the BOA the nuclear coordinates in the electronic 

function are assumed to be slowly varying in comparison to 

the electronic coordinates, and can be regarded as fixed 

parameters. Therefore, the electronic equations can be 

separated from the nuclear equations. 

In the traditional BOA the electronic motion is first 

separated and then the translational and nuclear motions 

are separated. Therefore, in this case only the center of 

mass of the nuclei is considered and not the center of mass 

21 
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of the whole system. However, in a more correct approach, 

the center of mass motion of the whole system should be 

8 

exactly separated before making the BOA. This is done by 

a transformation to the body fixed coordinates relative to 

the center of mass. In the next part of this section the 

transformation to the body fixed coordinates is made to 

separate out the center of mass motion. Then the electronic 

and the nuclear motions are separated in the BOA. The virial 

theorem can then be derived for the electronic and nuclear 

equations. 

A. Transformation to Body Fixed Coordinates 

1. Transformation 

8 

In order to separate the center of mass motion, Fro man 

first introduced the body fixed coordinates relative to the 

center of mass for the electrons 

— Js* ~ ~p[ ' (5.3) 
' K - \ 

and for the nuclei 

n o 
S = ™ % ' 1 *p 

° K ~ i 

(5.4) 

where 

= H " V (5.5) H 
>r= / 
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is the total mass of the nuclei. The p^- nucleus, which is 

quite arbitrarily chosen,is given by 

S = & •
 (5"6) 

"> *= J 
K ^ P 

Thus, the nucleus is given in terms of the remaining 

(n-1) nuclei. Thus the number of degrees of freedom of the 

system is reduced by three. However, these three degrees 

of freedom reappear as the center of mass coordinates given 

by 

h N L L I ™ L £ (5.7) 
K ~ l < * - i 

The total mass of the system is 

r^ - M 0 H- N m . (5.8) 

There are three degrees of freedom for the center of mass 

motion and 3N+3(n-l) degrees of freedom for the particles 

(omitting the p£^ nucleus) referred to the center of mass. 

Thus the total 3(N+n) degrees of freedom are obtained. 

2. Transformation of The Hamiltonian 

When the transformation of Equations (5.3) to (5.7) to 

the body fixed coordinates is made on the Hamiltonian of 

Equation (5.1), it is shown in the Appendix F that Equation 

(5.1) becomes 
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UU.S'r-.y. 

0 . »,0 o" (5.9) 
= t ; + W T„®+ vee4 v„e + v, _ 

which is independent of the nucleus because nucleus 

is expressed in terms of other nuclei and the center of mass 

coordinate is introduced. The translational kinetic energy 

of center of mass is 

_x2 \L 
T - - A - J* . (5.10) 
T 2 M 9C 

The electronic kinetic energy is 

,2. ^ i 0 N 
r, =-±-YJL - y A-.2- (5.11) 

2/« atf2" 2 M 0 ^ 5 V ' 

where 

*• + V (5-12) 

is the reduced mass of the electron. The nuclear kinetic 

energy is 

T„ = f 1 ^ jRj1 a M . ^ s g ; 35«' -' ( 5- 1 3 ) 

where the reduced mass of the kill nucleus is 

'• • 'i - kV (5.14) 
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It is shown in the Appendix F that the interelectronic 

potential energy of the system does not change under this 

transformation,but others change their form. Expressed in 

terms of the coordinates referred to the center of mass, 

the interelectronic potential energy is 

N 

V e e r 
I S ' Jfp I 

The nuclear-electronic potential is 

N Y) N 
SJ° 1 y- e 
^ 6. —» i-—» | Ia 0 n ° I ° ^ 

1 k-i - Kk pi 
, t ^ I 

HP 
m X™!# 
p 1ZI 

iP 

and the internuclear potential is 

(5.15) 

* (5.16) 

V„ = J. V Z - it e 
n 

K 4-4 - i 
r; 

+ 
e 

- L > _ p' p̂fr, ~ -• 

'<4P 

(5.17) 

From Equations (5.11) and (5.13) it follows that the 

Hamiltonian of Equation (5.9) contains the terms of the 

type 12- and fk,+ /0* Also, the electronic 

and nuclear masses are replaced by their reduced masses. 

The fact that there is no coupling term ^ in the 
n ; *> U 

Hamiltonian simplifies the separation of the electronic and 

nuclear motions. 
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B. Separation of The Center of Mass Motion 

The wave function in the new coordinate system 

depends on the center of mass coordinate, all the electronic 

+*"h 

coordinates, and all but the p^3- nuclear coordinates. For 

separating the center of mass motion & is taken as a pro-
O 

duct of translational and the nuclear-electronic wave 

functions 
£ = 4/c) 5<: (518) 

When this equation is substituted into Equation (5.1) and 

divided by & & , Equation (5.1) is separated into 
ot ^oery 

the center of mass equation 

-i- 1 & c c ) = £ § ( c . , 
2m 3c T (5.19) 

and the equation for the electronic and nuclear motion 

relative to center of mass 

-v Met -V 4 
(5.20) 

( ^CM ) ' t e n 

where Et|Vl is a separation constant which is the kinetic 

energy of the center of mass, and r"and R°collectively 

denote all electronic and nuclear coordinates, respectively. 



27 

Equation (5,19) is the translations! wave equation and 
i K*C 

its solution is a plane wave £ g where the momentum p 
*v\ 

is related to the wave number jjC by 

£ ~ ^ & * (5.21) 

The energy required for the center of mass motion is 

(5-22) 
3 M 

Thus, if the center of mass energy P + q , the molecule 
CM v 

is in an excited state. In the ground state of the molecule 

- O (5.23) 

and the center of mass is at rest. Therefore, if the center 

of mass is assumed to be at rest/ then without loss of any 

generality the separation constant can be set equal to zero. 

C. Separation of Electronic and 
Nuclear Motion 

To make the BOA on the wave equation for the motion of 

the electrons and nuclei relative to the center of mass we 

assume that the relative wave function & can be written 

as 

(5.24) 



28 

where d> { / S.°) is electronic wave function 
i - Q g X ^ ft*- J 

which depends on both the electronic and the nuclear coordi-

nates,and & ( R ° ) is the nuclear function. 
OfTh 

Equation (5.20) then becomes 

\j£t£c)+~rf(g°) + Vee f Kt + V^)4oe$0y, ~ ^ <#oe ̂ on'(5 25) 

In the BOA, assume that the nuclear coordinates in the 

electronic wave function are slowly varying in comparison to 

the electronic coordinates, and can be regarded as fixed 

parameters. Therefore, the derivative of electronic function 

with respect to the nuclear coordinates can be 

neglected (compared to that of the nuclear function & O K ) ) • 

It is shown in Appendix G that this approximation leads to 

the electronic equation 

+ Vee +v*e) ^oe ~ J (5.26) 

where the separation constant £ o eCR°J is the electronic 

energy and depends on the nuclear coordinates as parameters 

only. Therefore, £oeC£v"7
 aPP e a r s a s a potential energy in 

the nuclear wave equation given by [See Appendix G] 

[T^CR") + + E„t] i o h =. to L , 

(5.27) 

where E 0 is the total energy of the system. 
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Thus the electronic and nuclear motions are separated 

in the BOA. The derivation of the virial theorem for these 

equations is given in the next section. 



VI. VIRIAL THEOREM IN BORN-OPPENHEIMER 

APPROXIMATION FROM AN EXACT 

WAVE FUNCTION 

After the separation of the electronic and the nuclear 

equations, we are in a position to derive the virial theorem 

in the BOA. First the virial theorem from an exact wave 

function is obtained and then in the next section the trial 

function is considered. 

A. Electronic Equation 

In the previous section we obtained the electronic 

wave equation in the Equation (5.26) given by 

<£oe = Eoc $oe • (6.1) 

where _ -jO + ? (6.2) 

and Tg is given by the Equation (5.12). V e is given by 
o ,o o 

Ve - -V- V n e ' 

o o 
Veê  and V n e are defined in Equations (5.15) and (5.16). 

It is shown in the Equation ( H.14) of the Appendix that 

/T"\ - ± F~ (r,* • > , 
S 'e / - 2_ Z__. \ ~ sr; / (6.3) 

C< z. t ^ 

which is the virial theorem for an exact wave function of 

the electronic equation. 

30 
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For the Coulomb potential given by the Equation (5.15), 

the Equation (6.3) reduces to 

^ 3V° 
! / v-° «vne 

< T e « > < V e e > 4 - ^ < & . _ ^ > 
(6.4) 

JK 
<• - I ~ 

Equation (6.4) cannot be further simplified. 

The virial theorem for the nuclear equation is derived 

in the next part of this section. 

B. Nuclear Equation 

The nuclear equation as obtained in Equation (5.27) is 

given by 

H n & n = , (6-5) 

<5 10 0 

where H n - ln "+ , (6.6) 

a n d Vn° x
 ( 6- 7 ) 

From the Equation (H21) in the Appendix the virial 

theorem for the nuclear equation is 

< " 0 = • < 6- 8 ) 

/ ~ / v-vO 
1 

Equation (6.8) can be redtaced to 

<"C> - <% • j£r>-
> -1 
<'*p 

Further reduction of Equation (6.9) cannot be made- The 



32 

Equation (6.9) does not include the pJ=ll nucleus, because in 

the body fixed coordinates the p£k nucleus is expressed in 

terms of the other (n-1) nuclei and the center of mass 

coordinate is included. However, in the ground state of the 

molecule, the kinetic energy of the center of mass is zero: 

<" T y CO • (6.10) 

In the next section the virial theorem from a trial wave 

function for electronic and nuclear equations will be derived. 

C. Relation Between The Virial Theorem 
In The BOA and The Exact Virial 
Theorem For The Whole Molecule 

In separating the electronic and nuclear equations from 

the total wave equation,the center of mass motion Equation 

(5.19) is first separated out. This reduces the number of 

degrees of freedom of the system by three. In order to have 

all the (N+n) degrees of freedom,the wave function for the 

center of mass should also be considered. The total wave 

function is the product of the wave functions for the center 

of mass, electronic and nuclear coordinates,and is given by 

# (6.11) 
o o-f ^oe ov\ . 

Now the virial theorem in BOA can be expressed for a total 

wave function . First, the virial theorem for the nuclear 

equation is expressed in terms of <1? 
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1. Virial Theorem for Nuclear Equation in 
Terms of Total Wave Function 

The virial theorem for the nuclear equation is given 

by the Equation (6.9). For the expectation value Tn"y the 

following expression 

J3y&h* < t«°> 

= ̂ 4 ^ / d 3 C V ° T.° I 

d?Y d9V C, 4^ (6-12' 

is obtained. Going back to the assumption made in the BOA, 

according to which the nuclear coordinates appearing in the 

electronic wave function are slowly varying functions com-

pared to other electronic coordinates and the nuclear 

functions, it is shown in Appendix I that the Equation (6.12) 

can be approximated to 

= fdWx°^F#°* £»* 4o'» T°^ 

- < X ° >„ , (6.13) 

where ^ ^ is the expectation value with respect to the 

total wave function. Now consider the right-hand side of 

the Equation (6.9). Proceeding the same way,it follows from 

the Equation (I. 3) in the Appendix that 
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I i i's. <?t° { A 4 : , € n i o e f 

— T ^ ^*- /̂ b (6.14) 

Finally, the energy E o e is given by 

Eoe Jd,x"«.«civ%v.;+vy," )*.<• <M~'(6.i5) 

Under the assumption made in the BOA, the nuclear coordinates 

in <§ are very slowly varying. Therefore, the gradient of 
<?€-

Equation (6.9) with respect to is 

^ J d 3 V 1^*1 <£oe [cl̂ 'x ° & * <$oe 

(6.16) 
"3R-e * 

Substituting for from Equation (6.16) into the expecta-
:> rJ 

^ c 

tion v a l u e ^ g-p \the following is obtained in the 
<'i •> "°,~V 

Equation (1.5) of the Appendix 

$ fd*s C < i . r < £ Rj > i . T { « H R
c *• 

r\ 
* 

*< ) ^ ^ o x c -t: \ fv- -v —o*j * 
\ / f ̂  p & K^' J ^ 

rv « -\ 1/ ° o e ^ 

- Z . ^ ~ s¥_.. >„ (6.17) 
1 f P (V 

Collecting together the Equations (6.13), (6.14), and (6.17)* 

the virial theorem Equation (6.9) reduces to 

<C T 0 \ — - i <( V ° \ -f- -L T " < (?/ • \ 
^ r0 ~ i x • ?o -x Z_, > - g p 0 ) 

ijr (6.18) 

which is the expression for the virial theorem for the 

nuclear coordinates in terms of the total wave function. 
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2. Virial Theorem For Electronic 
Equatign -IlJ Te£ffi£ og TJig Total 

Wave Function: 

The virial theorem in the electronic equation is given 

by the Equation (5.23). The expectation value of the 

electronic kinetic energy can be written from the Appendix 

I as 

V A d 3 C h r 

- < ; < 6 - 1 9 > 

where the expectation value is in terms of the total wave, 

function. In the same way the electronic potential energy 

is expressed as 

^ dsT$: $* H v.: > k* c 1 

~ ~ Z ^ \ * (6.20) 

Finally, in the Appendix I it is shown that the last term of 

Equation (6.4) can be expressed as 

{ F s * * ? ' £ i * < p s : 

N 

= r < v • \ . 

J r i ° (6.2i) 

Thus Equation (6.4) reduces to 

r-j 
/ T \ 
V '« /o ~i o«>.+ iE<r- , 

** *c' 

(6.22) 
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which is the virial theorem for the electronic system in 

terms of the total wave function. 

It is shown in the Equation (5.23) that for the ground 

state of the system the center of mass energy 

E c m = O ^ (6.23) 

which gives 

< Tt > = o • (6.24) 

Thus the total kinetic energy of the system is 

< T \ ~ < T t X + ( 6 2 5 ) 

= < 7-e
c> + S 7 V > . 

e s o 

Adding the Equations (6.18) and (6.22), the Equation (6.25) 

yields 

>. =-±<K\+±z<y- - ± < \ : > 
cSz-t 

V\ 
~h -L y ' ^ \ 

*ri; * (6.26) 
i £p 

From the Equation (1.19) in the Appendix, 

f L = - vVe 
t j v 4" -itj. CX-- " • " •>-* 

(6.27) 
i - i 
t P 

Substituting from Equation (6.27),the Equation (6.26) reduces 

to 

<T \ = ~± < V >„ , 

(6.28) 
which is the virial theorem for the whole molecule. 
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As seen from Equation (6.26),the virial theorem for 

the whole molecule in the body fixed system does not include 

the p̂ ll nucleus. If transformed back to the space "fixed 

coordinate system, the virial theorem for the whole molecule 

in Equation (3.14) is obtained. 

Thus the virial theorem for the electronic and nuclear 

equation can be combined to get the virial theorem for the 

whole molecule. The equalities in this case are approximate 

and are restricted to the assumption made in BOA. 



VII. VIRIAL THEOREM IN BORN-OPPENHEIMER 

APPROXIMATION FROM A TRIAL 

FUNCTION 

The virial theorems are derived from generalized scaled 

functions for the electronic and the nuclear motions. It is 

shown in the next part of this section that no extraneous 

term Q , , which is obtained using the same scaling 
/ W -

"2> ft 

parameter for the electronic and the nuclear coordinates^ 

appears in the virial theorem for the electronic motion. 

A. Virial Theorem for Electronic Equation 

The electronic wave equation as obtained in the Equa-

tion (5.26) is 

? - ) = r , r ) , (7.D 

where E Q e is the electronic energy and 

i O o . o 
— T e e . (7.2) 

CJ 

Here T e is given by the Equation (5.12) and 

Ve° (7.3) 

G o 

where V^e and V^^ are given in the Equations (5.15) and 

(5.16). The expectation value of the Hamiltonian with 
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respect to a trial function C ) is 

E«C£°] = < ^ I Hi 1 > £ ( 7_ 4 ) 

< t « K , > ' 1 

Scaling the electronic and nuclear coordinates, a 

scaled trial function is obtained. Since the electrons are 

identical particles, the total function should be anti-

symmetrized for the electronic coordinates. The 

antisyinmetrized scaled wave function is.. 

3 

(7.5) 

where is the antisymmetrizer given in 

the Equation (4.23). 

The expectation value of the Hamiltonian with respect 

to the scaled function ^ i s ^ 
^ 111 

( rl̂  ° \L> ic T 

~ ~ ' ( 7 - 6 ) . 

where 5 = f f. j 4 ^ 

and 3 e" =. ^ 6.,' -- • p;-> , ?r*. Ef« 

The energy beL^ is a function of the scaling factors 

and 1*5 . Since the nuclear coordinates are fixed para-

meters# the scaling factors s can be considered along with 
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other parameters of the wave function and can be varied to 

get a better value of the energy. In order to obtain the 

virial theorem for the electronic energy, the energy in 

Equation (7.6) should be minimized only with respect to the 

scaling factors 

SEgH") . 'S&J _ 0 : - i , /v/ (7.7) 
* X 

As is shown in Appendix J# 

D(;j "<-1 I 

which gives the virial theorem 

< T « > = ^ f v t s \ i v L \ (7.9, 
K '-n a \ ~ I V A , . 

Writing the explicit form in Equation (7.9) for the 

potential energy \l° , Equation (7.9) can further be reduced 

to 

N 

<Ve«l + x ZX£ ' Tc) ' (7-10> 
' / «<•=., " ' T J 

The last term of Equation (7.10) cannot be further 

simplified. 

The virial theorem is also obtained if *Y{ is orthogonal 
X"V"* 

to ^Ee ? so the virial theorem does not necessarily imply 
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minimum energy. However, if the energy is minimum the 

virial theorem is satisfied. 

B. Virial Theorem For Nuclear Part 

Separation of the electronic equation in the Born-

Oppenheimer approximation yields the nuclear equation given 

in Equation (5.27): 

H r u i - j - t t . c n , . 

where E Q is the total true ground state energy and 

h; = T„° + v„'„ + . (7.12) 

The nuclear kinetic energy operator T„° is given by the 

Equation (5.13), and the internuclear potential energy 

by Equation (5.17). For the sake of simplicity, assume the 

nuclei to be distinguishable particles. The case of 

identical particles, either bosons or fermions or both, is 

considered in Appendix E but does not change any conclusions 

reached here. Then the scaled wave function is 

^ ^ C ^ U v,£*. • - - ̂  I') • 

(7.13) 

The expectation value of the Hamiltonian with respect to the 

scaled function depends on the scaling parameters#and is 

defined as 
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r r * ° ,r, * 
E H i° ^ Ec 

r , 3 C h - O ^ v -
d R' & 

5 5 (7.14) 

If the energy is minimized with respect to the parameters 

? .1 s then from Appendix J, 
I i 

O ~ ) f. 
»ir * 
<*•*> 

— Q / 7" ° V _ — T x ^ ̂ "e- */ (7 15) 

»'/p ">P 

Equation (7.15) reduces to 

< ~£°>, = " -*' f t ; ^ ' (7.i6) 
I i-/ /Vv J 
'tP 

which is the virial theorem for the nuclear equation. 

The energy not a homogeneous function and is 

not taiown except that it is obtained as a solution to the 

electronic Equation (5.26). So "3Ee cannot be further 
"3 Rc 

simplified. Since the p^k nucleus is expressed in terms of 

other nuclei, the Equation (7.16) is the virial theorem for 
a system of (n-1) nuclei. 

If the (n-1) -dimensional vector 

I = * ^ 5 > » ( 7. 1 9 ) 

is orthogonal to the (n-1) -dimensional gradient 
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1) Eg _ S kg __ "3t0 > 

X*, 1 H |̂°-H T̂-i 

(7.20) 

the same equation as Equation (7.16), which gives the virial 

theorem, is obtained. Therefore, the virial theorem is 

satisfied at all the points where j is orthogonal to *3 E e • 

This proves that the virial theorem is a necessary but not a 

sufficient condition for the minimum energy. 

As shown in the previous section, the relationship 

between the virial theorem in the BOA and the one for the 

whole molecule can be obtained by formally scaling the 

center of mass wave function. 

In BOA the electronic energy is first minimized by the 

Rayleigh-Ritz principle and then used as a potential in the 

nuclear equation. Finally, the total energy of the system 

is minimized with respect to the scaling parameters for the 

nuclear coordinates. Thus the Rayleigh-Ritz principle can 

give an energy lower than the true energy of the system. 

Therefore, in general the total energy of the system cannot 

be obtained by combining the energies for the center of mass, 

electronic and the nuclear equations, but may be approximated 

by the sum of these energies. 



VIII. CONCLUSIONS 

In this thesis the virial theorem is derived, by use of a 

trial function with a different scaling parameter for each 

coordinate. This is an extension of the previous result 

obtained by Brown7 for systems of electrons only. Also, the 

virial theorem is obtained here for a general potential,and. 

then as an example the Coulomb potential is considered. 

A transformation to the body fixed coordinate system 

is made to separate exactly the center of mass motion from 

the total wave equation. Then in the BOA the electronic and 

the nuclear equations are separated. The virial theorem is 

then derived here for the first time in the BOA,using both 

the exact and the generalized scaled functions in the body 

fixed system. 

Previously in the case of fixed nuclei a single scaling 

parameter was used for all the coordinates to derive the 

virial theorem, and so an extra term was obtained.6'9'10 

5 

According to Slater, this term was due to the force which 

keeps the nuclei fixed. On the other hand, it is shown in 

Section VII that the virial theorem can be exactly obtained 

if a generalized scaled function is used for the electronic 

44 
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motion. Combining the virial theorems for the electronic 

and the nuclear equations together with the center of mass 

motion, the virial theorem for the whole molecule is obtained. 

Of course, the equality signs in this case are only approxi-

mate. In general, the expectation value of the center of mass, 

electronic, and the nuclear energies together does not yield 

the total energy, since there is a coupling between the 

nuclear and the electronic motions which is neglected in the-

BOA. 

A derivation of the virial theorem for the nonstationary 

state of an exact wave function is given here for the first 

time. Obviously, for the stationary state of a function no 

time average is needed, and the virial theorem follows. 

Besides the classical and quantum mechanical cases, the 

virial theorem has been extended to statistical mechanics. 

The virial theorem can be used as a check when the energy is 

minimized. Other related applications are in the references. 

An application to the H2 + molecule will be made in the near 

future. 



APPENDIX A 

THE VIRIAL THEOREM FOR CLASSICAL SYSTEMS 

For a system of electrons, the electronic kinetic 

energy -j can be written as 

2Tc = £ > • £ , * = £ > •> 
<* = ! ot=.t (A. 1) 

and so it can be used in Equation (2.3). A similar expres-

sion for the nuclear system is 

^ > 1- JX. 
2T„ R,. P, (A.2) 

where T n is the nuclear kinetic energy. 

The total kinetic energy of the system is 

T - T e +- T n (A.3) 

Therefore, from Equations (A.l) and (A.2) the total kinetic 

energy can be expressed as 

aT = L i-'fc + r. ^ 
pc77 ^ <-< {A.4) 

For the interelectronic Coulomb potential of Equation (2.17), 

the gradient 

46 
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= 1 y e x ( fc- > ) 

« M = ' S £' - *> \3 

N 

+-; r c M s - t ) 

I X, - v„ I 
*-V» A/̂  J 

3 

(A.5) 
Equation (A.5) leads to the following result, 

2 , £ • ^ - H — r = ~ v < 

A similar calculation for the nuclear-electronic potential^ 

fee ,i 

gxves 
N 
i n 

Yk . ?V, 
/*yv 

i - + y P„- • ? v " e _ v 

9 r* / , rsn - ~ Vv>e s , 
^ flT <A-7) 

and for the internuclear potential energy gives, 

n 

f? A » V 
J d I rŷ  

^ 9a. ^ * (A.8) 

Adding Equations (A.5), (A.7) and (A.8) one obtains 

F " & . +. y~ ^ v 
ft? > v„ frr 'a e- ~ ' <a.9> 

The virial theorem (2.14) then reduces to 

T - - J- Y . 

(A.10) 



APPENDIX B 

VIRIAL THEOREM FROM AN EXACT WAVE FUNCTION 

IN QUANTUM MECHANICS 

The operator t • has implicit but no explicit time 

dependence. Taking the time derivative of the expectation 

d < • % > = d C / ^ ^ J 
~ ~ d> L 

= [ d \ r — * vi.ft, $ ^ 1 1 

J L - - Ijt ( B . l ) 

The Schr'odinger Equation (3.1) gives 

d / Vi • k > = Ca*0 }d3JC C & ' k i ^ (B 2 ) 

Therefore, it follows that 

^ < S - 6 r > ' ' H ^ > ( E. 3 ) 

and for the nuclear system a similar result is obtained 

- \ 

A <ft,.P/> <B-4) 

cU" ~ 7 

Each component of the commutator ̂ .^vt^is simplified to 

obtain the expectation value. 

48 
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Consider first the yt component of 

> *1 - l - t + - v 3 # (B.5) 

x« ^ j i + n X v ^ a / i ̂  

C j C . ^ v ^ t ( x u - V ) ( U j 
* Qyyy 

= (x« < - ft,* x. K )f + x. c » v - ^,y(. 

= (, R, y« R, - p«^ v« - -x« >,x + x, C H - ^ ) # 

+ v„ ^ tv, v - V & (B .6) 

SO 

r > is, , H ] $ = c ^ \ ^ i h. * 
^""" 1lVy\ 

+- L x*< ' J '2 wn 

A- X [• t x , V ] £ (B.7) 
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Making use of the commutation relation 

L x*' ^ j 
(B .8) 

Equation (B.8) yields 

i H = 2 ^ £ £ + \ L ^ •> v ' 
1 m 

(B.9) 

Similar expressions for the Y and Z components 

give 

£ • k ) H $ = 2 ^ Jk £ + £ -[ & i
v ] $ -

2 m (B .10.) 

Therefore, for a single particle the expectation value of 

Equation (B.ll) is 

<££•£ ' H ] > = 2:1S <£, > + fe.1, #*,g - [6. ,v ] # 

or 

<jC *, 
(B.ll) 

/ 
\ t-fe , H ] > = - ' * < & • & >• 

A similar relation for the nuclear system 

( [ ^ ' 1 i H ] ) "- 2 : ̂  ) 
/ R; 

is obtained. Therefore Equation (3.8) becomes 

(B.12) 

I V 

^ V - v 

(B.13) 
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i u s Y i ̂ ^ \ •> (B. 14) 

<3* " ^ v» r 9^- 3 I" 

G , = F L C r« • • , } , ( B' 1 5 ) 

c< = I 
then one obtains 

So from Equation (2.7) the time average of Equation (B.16) 

is zero 

d / GiV = o , , 
a> (B.17) 

and thus one gets, 

N ^ 

Z—_i a 
of - I 

< £ y ~ i IT < % • ^ > If. / ' (B.18) 
<~r-

For the electronic system, Equation (B.8) reduces to the 

virial theorem 

£ < * ' LR.'> 
3 V 

— v i > \ '* ' 
^ / t ^ ^ a ^ ( B > 1 9 ) U - | 

Similarly the virial theorem for nuclear system is obtained 

/ T \ - 1 / < R-' ' — ^ 
V > * / / ---> ^ 
N • "3 p, 

(B.20) 



Therefore for the whole system 

H n 

o<̂i i - i 
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I V / V« . \ + 1 y / K; • 21. \ 

(B.21) 

For a stationary state, l f - o therefore 
3t > 

A- / K . & \ - O , (B.22) 
\ ^ ^ / ? 

and the virial theorem directly follows 

^ ^ Z_A ~ I i JL \~ ^r»- / * 
e< = l ' = 1 

(B.23) 



APPENDIX C 

VIRIAL THEOREM FROM A TRIAL FUNCTION 

1. Virial Theorem in Simple Scaling For The 
Whole Molecule 

The virial theorem is obtained here for the whole mole-

cule from a trial function 

Em = { fd31 d3lk o1 R ) . 

+ E ' - — - ^ V ( V , R ) ] ; 

^ "1 £ , n g. •) 7 . 

f IN ah 3C^J+n) • 

^ j d f d ft ^ ^ ¥ C " 1 £ , °1R )• 

f C°1£| I" 1 , 
(C.I) 

where 

X = i "* - i , - - - ( 

collectively denotes the electronic coordinates and 

£ = $ & ) , i - > » " - " ^ 

denotes the nuclear coordinates. Making the transformation 
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r* 
CK n & <*: ~ , N 

and 

R; = ^ 

to get the proper dummy index of integration, the Equation 

(C.l) becomes 

£ ( 2 ^ 1 = { c t 3~ * * < £ ' . JS.'") 

M _ 

•»f (y -jL ^ + 
1 \ Z . a m ^v-' 

v ex-ri OrX 

n 

-K2" ^ 
2 m. 

i -= i R; 

• + V ( 
V R' A 
•r] 1 ^ ! ^ { V , £ . ' ) 

dJj:'c! 3' f'd'.S.') 

(C.4) 

E [•y] is minimized with respect to ^ to obtain 

O 
"3^ 

1. , T \ < T > + Y V - -

e* x I ~\ 

(C.5) 

Expressing in terms of the expectation value with respect 

to ^ , 
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N _ , r\ 

(C.6) 

which gives the virial theorem 

N Y\ 

/ T V - J TYr, . y \ + l V < f c . 2 V \ _ 

Ai -4. L-S\~- -jyw } 5̂  ~ a£,. ' 
- "1 <" ~ 1 ( c_ 7 ) 

For the Coulomb potential given by the Equations (2.17), 

(2.18), and (2.19), 

N N 

J £ • 21. _ y v. • "avs. + y v. • 'v.t 

~ L* SY, ' 

" ~ (C.8) 
and for the nuclear system 

yS. • 2 v - ir a. • H e .+ r i?. • •jv., 

4- ~ 3Hi ~ 4 - ~ Ri ^ " W ' .. 
— i-1 i -> ~~ (C. 9) 

From Appendix A the Equations (C.8) and (C.9) become 

a/ " 
V y. . 2 v + y n j : 2 X = - V 

~ Ta 4—* ^ R„ 

(c.io) 

which gives 
^ T > „ , - 1 < V > ^ • 

(C.ll) 
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2. Virial Theoreir. In Simple Scaling 
For Fixed Nuclei 

The nuclei are fixed so from Equation (4.17) the 

expectation value of the electronic energy is 

E e£«l,SJ = & t o e , "I £ 1 

\ / d 3 1 ^ 3 f / c i r ,"\e 
(C.12) 

Making the transformation 

Y ' - r , 
^ I R W > 

where the electronic coordinates are 

(C.13) 

(C. 14) 
V - ? v-« ? , * - , 
AA- \ > 

Equation (C.ll) reduces to 

E £ E 3 = \ f 0 , 3 V ^ * c * ' ' °i £") • 

? / d 3 x ' ^ / c r ' , i j ) 

(C.15) 

Minimizing E e with respect to ^ one obtains, 

o ^ 2. ft ] . 
^ (C.16) 



57 

From Equation (C.15) it follows 

° - ^ ^ / d 3 W ~ ' ^0.*^ X'."l£)C'>l'1T£ + ^ ^ ' , £ 3 ] • 

-M £ ) I • 

\ I c ^ V c r ' ; °l£ ) 

- ^ [ C/3^' Sf4*c >: S 'n g') [ -x-nXe.-v £ - % ' . 2 ^ ] . 

~=< ^ *t-*f) 

% I £' , "* £ ) J 

cJ3NX' "1 £' :> ^ c z'l "1 £ ) f"1 

+ Z ^ ~ - i [ J d 3 x ' ^ * ( 
~ J A/V 

n3 ̂  I 
a i W ( i ' , i e ) ^ ( x ' ° i £ ) l 2 x ^ i o 

) 3 <>j 

- 2 Te> + <T^ ' ) -t 2_j ?r-2ii_ . (C.17) 
<*=' - 1r^ 

For Coulomb potential V t, from Appendix A it follows that 

X v . . ^ = - V £ . 
T<* 

r: | . . 
(C.18) 
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Equation (C.16) now reduces to 

o = 2<>\ < > -4- < Ve y + ^ • 'iik. 

(C.19) 

Expectation values in Equation (C.18) can now be expressed 

in terms of the scaled function to get 

o - < Tt ̂  + < ve ̂  ^ ~ ' ffr (c-20) 

where 

< T > = < T > 
™ (C.21) 

and 

^ < V (C. 22) 

are the expectation values with respect to the scaled 

function 4^ in terms of the expectation values with 

respect to the unsealed function 



IS 

APPENDIX D 

VIRIAL THEOREM BY GENERALIZED SCALING 

From Equation (4.27) the expectation value of the energy 

^ / ^ 3 z ^ o ) , 3 - i j ) 

+ r - J £ . 3 L ' + v i 

j 1 ,
 s m

 h : 3 R > i 

, l £ ) p ' ,(D.D 

where is antisymmetrizer and is defined in Equation (4.23). 

Making the transformation 

V* - °\
 Y« , 

W W 4 ^ - f ' ? 

(D.2) 
and 

~ ~ "1; £ ;
 i * =. I . • - - , h 

Equation (D.l) reduces to 

» (D.3) 

59 
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E M I = a 3 £ ¥ * ( £ ' , & ' ) 

?L ,~L I 1 " 1 2 ^ 

[ T - f m ' X 
<x~ 1 f^{ ° wo 

\,( £ St £• S" 
+ K '•' n j ' T 1 7 

D3X' d 3 R ' ^ * U ' , £ ' ) 

a ^ h , £ - 1 « V s l l \ 5 . • 

(D.4) 

The Equation (4.27) is given by 

N 0 

" 5 . 3 E 
0 - X T ^ H r + 1 

C< ~ 1 n , ^ frr 1 H ' <D-5> 

which reduces to 
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f f i3N\ , 3 ^ / v 
O = { J ot z'eLR v f * ( £ ' , jg_ ' ) 

- ^ , , 2 . 2 , 2 - " 2. 2 -?• 
r z y ^ 1 •+ ^ Y-i±~ 1 2 ~ , z 
L / - 2 t n '« d r / 1 L-• am , 7« 9 

ck-v ^ , ' r | 

i n ^ w ^ s l f ) J 

^ / < l 5 r ' / | ' #*( t ' , £ ' ) 

ft- . - - ^ 

+ f f c l % r v r ' d 3 h £ ! c T + V " ] 

[ j d3Nl'd3"£ ^ * C x ' - S . ' ) ft- ^ 

+ I | / v / v ^ v ( x ' , R ' ) r T - , v i a * ^ 

gr] L- ?l. ) \ ) ~ ' 
oC-l * lz.1 >' 

( D . 6 ) 
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In order to simplify Equation (D.6), it is divided into three 

terms denoted by I, II, and III. The first term is given 

by 

i = c / 3 V 

-> ^ "J. 
d i y - * t " f - J _ + 2 y ~ x ? 

2YY\ a V / ̂  o -rn r ^ a 4— ^rn - "A gl?!1 
<x -1 Jr i=.i * 

A/ y ̂  r*\ rv f | 
+ y ^ - J L . + ' y ~ R ; 

Z - ^ ( v > ^ ZL-H J l ) X & U 
"1« " ' 

d 4> t "I,K . - - • 

.3/VJ j 

d X d R 

d^a'd3n(> s t * r ^ , R y 
(VV ^ ^ V- J /w ̂  

r 1 it • — •+- y 1 - ^ 
L £ ; ^ yj*> 

4- j" ~ y» -4- v & . -] , L ? 

£ r - •»% + z . - - J ? 
^ / z. / ' 1 ' 

,3Wy, _/3)0o r > -

^ .£ ^ 
(D.7) 
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^ - V, 

L> 5 >=-1 (/ J 

^ < Z ~ £ ' — > •+- < 7 - R- • ^ \ 

< T e > -+• ^ < T \ 
H f " 

r*> 
- »* * r— 

* < z - s - H , > + < X . - & - ^ - > . 
<*=< ^ "1»| î » -°7<| 

(D.8) 

The second term is 

H. - £ fct*Nr ' d2y)fl' SP *( X \ £' ) [ T f V ] 

^ "* J a ' " W ] 

\ I d ^ " 1 £' <!• *- C > V £ ' ) . 

0. $' a , * , - •- ^ |-> 

(D.9) 

Now for the sake of simplicity assume that all the nuclei are 

distinguishable. The operator Q operates only on the elec-

tronic coordinates £ ? and is defined as 

fi i N A 
" - 77i > [ - 0 P (D . 10) 

p 
(* A/ 
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where the permutation P is 

p _ r 1 - - • * N 

^ ' *2. * " " > (D. 11) 

A 
applying P, becomes 

xs,.s')-
(D.12) 

But the primed coordinate is defined as 

= • % a , 
A 

and so the permutation operator P gives 

/ , ^y) Y VfV ir f?1 \ 

"<K 

(D.13) 

T*ie £<* a r e n o w variables of integration, and hence not 

differentiated. Now apply jL_ 
/ & <y\ " 

_ -7) fc,' , •. - , !k V f , e'") 
— <g o oy ^ °1 /* <-7 * y . 

V 

(D. 14) 

i or 
/V 
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"Ip 

fc' 1 In £*'•£') 
" L 3 I^SL) \" ^ *P \ "7 

s 

+ x M , 4 ) . 4 #qs;...M ,*j 

\ 
_ F . JL P ̂ _ K.' . J_ P <y , 
~ ^ ' W (D. 15) 

where c*̂  is assumed to be p , Taking summation over J3 

gives 

% a P £ ( ° U , ... . "•US* ,-£/) 
A 3̂ 1 

/v /v 

t' • A . _ Y > * - — , f ^ 
~ p jv-/ L JJfp 

/S:» ~*P fi = i 

" V - ^ 7 ~ P* 
"a
 & Ja £-—' c) V. 

Z3-' /3 = / ^ 

- o (D.16) 
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Since the nuclei are assumed to be distinguishable, the 

transformation of Equation {D.3) makes -g p dummy variables 

of integration and so 

Z-' •*%' (D. 17) 
i Zi 

So from the Equation (D.9) 

Vl - o , 
(D.18) 

The third term of the Equation (D.6) is 

m = \ / d 3 V S1) £t+vj d<p-. 

^ p 3 V dsr)R' v » . £ ' ) 

Ud3N
X' <*3hE' #*(£'.£') 

_ r-i t \ 
r v CA q 
L X \ vf,"D ^ — j R'")^ 

(D.19) 

Using Equations (D.16) and (D.17), Equation (D.19) reduces 

t o UT ~ o (D.20) 

Now collecting together the Equations (D.8), (D.18), and 

(D.20), the Equation (D.6) becomes 



o 2 ^ TtX.^ •+ 2
 ( /„ y_ 

7 ^ 

^ r / 

• _ \ / /?; . 3 V \ 
i f~. Mc / > 

which leads to the virial theorem 

7, ? 
' 7 

<T> 
"7, 

^ / > t . ki 
n 
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(D.21) 

ci - I 

V 
... -• 

(D.22) 

where 

T Ti (D.23) 



APPENDIX E 

THE NUCLEI AS IDENTICAL PARTICLES 

For the derivation of the virial theorem when the 

nuclei are identical the following three possibilities are 

considered. 

1. When All The Nuclei Are Bosons 

The generalized scaled function is obtained by anti-

symmetrizing the fermions and symmetrizing the bosons in 

the trial function. The scaled function is therefore given 

by 

^7,! = 0.A ^"1.5 

(E.l) 

where operates on the electronic coordinates and the 

operator 

A 

A = 7T7 2 1 C + n P ' ; 
p> (E. 2) 

0 - -- r* ) v ; 

operates only on the nuclear coordinates. The permutation-

Pt is 

\ a - - - Ti 

P, = ^ r, - • • i„ ) <E-3> 



69 

The operators ^ and should be applied before making 

the transformation to set the dummy index of integration. 

Consider 

Pi $ ( " U 
<-Vv f 

X & , I? > 
J 

.}• 1 

K- <E-4> 

operates only on the nuclear coordinates and so 

first applying it 

A" A- »tn 

' a/ Ik R; ^ 
lk 

4 - ? - M i - . 
•Sir /_ ̂ 2. ̂  ~77T I ~ T / 3/. 
* T > - H - M 

i i - J L ^ - £ . 5 p,^ 
3 & (E.5, 

where ij = k. 
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A sum over k gives 

f) 

i 

1 J L ?x = o • 
K (E.6) 

A 
The permutation P can now be applied to the electrons 

to obtain 

PFJsP •= 5,', f - & •- - In- & ) 

(E.7) 

o 
"397 operates only on the electronic coordinates and, 

'of 

as derived in the Appendix D, it follows that 

N 
y°i ^ p p ^ - o 

2>°1 

"*-> * (E .8) 

when the Equations (E.6) and(E.8) are combined and substituted 

into Equation (D.9) and (D.19), then the second and third 

terms of Equation (D.4) reduce to 

H = o 

and 

TTT - o 
(E.10). 

Thus as shown in the Appendix D the virial theorem follows. 
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2. All Nuclei Are Fermions 

The electrons and the nuclei should be properly anti-

symmetrized to obtain the scaled function 

(E.11) 

where ̂  antisymmetrizes only the nuclei and is given by 

a, - ( « ! ) } _ i-1'1'' p, . \ru. 
, P> (E.12) 
(i---h) 

Applying first Pt and then | a similar cal-

culation as in the part A of this section yields, 

n 

y 7 ^ j l pt ~ o . . (E. 13) 
L—i }K 
k V 

The proof of virial theorem follows as before. 

3. Nuclei Are Combination of Both Bosons and 
Fermions 

If n-̂  nuclei are bosons and n-n^ are fermions then the 

trial function should be antisymmetrized over all the fermions 

and symmetrized for all the bosons. The scaled function is 

therefore, 
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' \ i =• * ? • • • E . i 4 ) 

The operator ( X antisymmetrizes the electrons only and Q 

operates on the nuclei and is given by 

^ I £, /• 
oi, = — px 

1 C n-n,)l V ( E- 1 5 ) 

Ot+i--- n) where 

nt-H - - -

I - _ . . f 

V\ 

n ^ 
L* J (E.16) 

The symmetrizer operates on Bosons and is 

p. " 

^ ^ t4"' p' 

where 

Pt 

C i• - ">) 

, . . . . n, 

L, - - - • U 

K 
The permutation P, is first applied to to get 

(E.17) 

(E.18) 

P.vp -vp^.r, 

111 (E. 19) 

For k = ',t , • - • • n, ^ ^ "3 

operates only on the bosons and so it can be applied to 

and 
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n 

Z ^ ̂ r-
 P' * - ° 

(E.20) 

is obtained. 

The operator Pz interchanges the nuclei which are fermions 

giving 

p/p, £ = ^ ( 0 ^ ."i„v % R_.„, ... k . K ) • 

^ K , 

(E. 21) 

For k = v\.-*\ . - • Y) it can be shown that 
i f 

P̂~r ? h A A r 

X . \ P. ^ ~ ° ' (E.22) 

Finally P can be applied to get 
N •' / A z_ >« \ p pa P, ^ -

« = ( (E. 23) 

Collecting together Equation (E.20), (E.22), and (E.23) 

and again the Equation (D.9) and (D.19) give 

3 — o i (E.24) 

and 

TTT - o . (E.25) 

The case of an arbitrary number of different bosons 

and fermions can be treated in like manner, and the virial 

theorem follows. 



APPENDIX F 

TRANSFORMATION OF THE HAMILTONIAN TO THE 

BODY FIXED REFERENCE SYSTEM 

The Hamiltonian in the space fixed system given in 

Equation (4.1) is 

H = J r - i l + f l j ? _ i l + V , 

oC ~Z I ~ i - I ~ 

(F.l) 

where the potential V is given in the Equation (2.16) . 

A transformation of the electronic and nuclear kinetic 

energies is first made. Then it is shown that the potential 

energy is transformed. 

8 

1. Transformation of The Electronic Kinetic Energy 

In order to make the transformation, consider a function 

f in the body fixed reference 

/ = / ( * , • , R . V - • s ) , 

(F.2) 

where the body fixed coordinates are given by Equations (5.3), 

74 
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(5.4 )» (5.6 )/ and (5.7 ). Taking the derivative of f with 

respect to r,* ? one obtains for the gradient 

Jl£ = r + 

in ' J r« f- s t 
jO ~ J ( ^ J - | ^ 

P 

3 -f 2 c 

K ^ 

Q -f m ^ ~£ 

^ r* m s c 5 

(F.3) 

and for the Laplacian 

^ i £ = f * J _ . 2 f _ ^ i _ . 1 £ cTkp 

pT, 3 J p M ^r; a # 3 £ 

5 if ^ 5 = ^ ^ nn a T^f JL . iZ. ( —IT. \ -j~ 
"3 V 1) c \ / m a ? _c " 

^ , linn ^ ~3 -f , "mi1" D -f 

M ^ m 2 ~ 

(P.4) 

Summing over all « gives 
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-J- li. = i f i f i£ 
^ 3 ^ Z__, a h sy-; k 

C\ *3- ( /v̂  

/N1 

r. 
°C — i 

^ + ) 
M Z — 

oC- 1 
Yri N 

M 1 2 C2-

•f ^ N J f . (F.5) 

Thus the electronic kinetic energy transforms to 

—r- 7 ,£{. N 

T e - _ i . y - j _ _ ^ r j _ y ?• 
2 m ^ ) s < " 2 m L m f T T ' 1 

C< - f .* 

N _ 

4- — ) _L_ . iL -+ ̂  N V 
3e2J ' 

^ - f -V- ^ ^
 A 

(F.6) 

2. Transformation of Nuclear Kinetic Energy 

For K 5 \> the derivative of F with respect to 

,1 

is K 

UL - f ' 1 £ . l&l -+- "V -i -t . H i 
^ ^ k O3 f?J[ ^ 

<* - f ^ X n f ^ 
< 4 w, F 

+. . i B C . 

(F. 7) 
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w h i c h r e d u c e s -to 

~f _ \ ^ K \ ^ "P 
"5 Rw Mo *v~„° r^io Z - - 3 R j 

c<~ i ~ f ^ 
•f + P, K 

+ 1 ' - y ^ f ) 2 L -+- . 2 J L . (F.8)-
1 1 K M ^ c. 

The L a p l a c i a n i s t h e r e f o r e 

_ T r \ - \ "J 2 £ 7- ^ V . 3-f 

-H P,k ) 

N N 
4. 2 (~ m * A fI - ^ \ ^ ^ t- _ 2 \ • l £ 

Mc 1 v M0 -̂ Vp- ) J p *JC 
ri=i 

1. ^ r- "2- -sa/-
^ V 3 . i L j_ I i _ ^ f + B s - 7 * - 2 - • l i - + ( \ -
M —• / ^)!5° ^ (?" \ K h " ^

 x ^ 1 -3 R0^ 
° '*1-1 Jz.1 rj~ AXk 

•7^^ p i AP 

, -JiK 

+ 2 ( - Z T k ^ i i - Y _ s _ . - L i _ 
^ /V]c A M J ^ - R; 3 g ; 

* 4 h * 

_L 9 (- N*" \ ^ . 1L _u 2 (i - 222JL) XHK_ 3 , <L£_ 
^ MM.J Z - K 3 P ° M J M 9Re 

/ — i ~ ^ -v-K 

^ i -N"2- r 

M2 ^ £ 
( F . 9 ) 
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Taking summation over all k, k^p, 

Ar •> r 
J - t ' f 

Yr v ^ D a_ 
K =• I k 

K±f> 

r> n n N ^ _ p 

y S _ i _ . - i f . -v y ^ V" S ^ ^ 

£ ; '.v h ^ 

n" 2 v " ^ ..l£ y - 2 V-' JL_ i±- - ~ f i- —-K ]) a - i±. 
Z - m m / ^r*' >C M o L> \ M o l j ^ 3jy 3R-
Lr* — f /O- i "** k ~ I ' K"=l /3r, 
K$l> 

•n n -. /• '' r a /• 
- rrv V — "i 3{ _ L V ^ ^ k \ ^ "> + 

f,k 

K> 
V f, 
" A I 

1 rv%, 
K = l 
K^p 

n 

_l y " Jiv_ > _i_ . -±t_ -V- \ J__js_ > 
^ ^ R; -3 s C K f r , 1 R; 

K-=i ™=^=; - k = ( /, ~4 

K»f ^ , p /+Pl,t 

< 

n n n 2 v*- r 
V f i - ^ y j , . 2 £ + yj_(i-ros.-\ _ i i 

fV) <!~—> ^ 'Z-. ̂  R* 3 g° J ^" ' "3 1? 
K - / 4 = 1 ~ ~ K-I ~ 
k 4? ^ p 

f s i ! ! . v i . 2 i -+ ̂ y r (t- ! h a a _ . 2 £ 
/ . m m . / — Jc sr°, rv\ 1— \ M J 5R- JC 
/f̂ l 4=' ~ K=» 
*-£/> /+P,K ' ***> 

* ^ r 
•Vv̂ i, J + 

+ Z . i $ I V ' 

t i p <F-10> 
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To simplify Equation (F.10) consider each term separately. 

The first term can be written as 

5 

h N 
OTT), 

^ ^ t ° CK / — I 

A L 

M. Tl 

N 

~ i 

li£ 
> v; 

N 

+ ^ "P 

P -1 
ay- ]• 
(F.ll) 

The second and the fourth terms coxtibine to give 

n 

K - I 

k f p 

2 2Ht 

0 (Z-l 

HP 

1) , 

^ 1K' t K 
/v.P -v-̂  

h 

fell 
k-i 
K^f> 

r M V ' J , . L L 
M J L -j-R; 

~P ~~ 

2 m 

7 ^ 

n N 

-/= r £ 
A^-P 

" } "U 

p» 
(F.12) 

The third term reduces to 

n N 
V 2-
Z — Mfn0 
K-rs.1 
K:+P 

fi = l 

_1_ . I £ 
arB° ' 

N 

JL 
n 

U H e 
; ) Z 

ft-1 

^ y~ ° 
1 £ 
3 c 

(F.13) 
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and 

h ^ h . 

m*: _ A _ V ( k ^ V a . . Z £ 
- ^ Z . ^R; M J z L ^ R ; ^ 

K - I w^/-.i ^ K -t /-/ K 

K + p 

' W , / ^ 

j ! r v \ y 2 - " _s_ .11 

/ v ; sr: 
lw±t> ~l (F.14) 

The following terms reduce to give 

r>, n n 

3 V . V l /, ™ * \ x ^ f 
~7 

Yv\k 

i r - ^
 + ^ ^ M ° y , R « 

k -( ^ ^ x-.i 

2. 

r? 

i A £ iL_L _ (F.15) 
. ^ J i 

A — i x-v-

A I P 

and 

" '2 yyjjL Y ~ » . 1 1 + 2 ^ y f i - -s . ^C-"V 

^ ^ f-^ ^R d 
/r-/ ~ k^i 
K P, K • 

2. \ 1> . o1 

z_^ g ^ c 

-c 

(F.16) 
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Finally the last term is 

2l£ =. f _ yHjl. \ 52/ 
^ 1 C 1 \ ^12 / 1 c a ' <F-17> 

K~i 
ktt> 

Now differentiating f with respect to R p gives 
vv r 

- V"7 a £ • - h \ " ^ -f . 3 S-» ^ — 

^ R b ^ f", ^R; l?Rp "3C 3 R p 

^ f p<̂ / ^ ~ / J->~r r̂ r 

- - i22e_ V 7 1 £ _ >22zi V " * { _+. 2_£ 
m 0 Z - ^ v-./ / - ^ r; m -a c ' 

-r=M (F. 18) 

and so 

_ r-f ^ ^ ^ trv V " j _ , 2-L 
b̂ "if?2- /—• v̂-o1- Z— 1 "3V 
P <*&f> * <*~l ^ 

^o1 "3 R".x M c
x ^ 1 R " 4-i LJ 

/tf 

-i a , r»/ r> 
^ £ _(. 1 ^ V"7 V ^ "5 -f 

?22p ^ ^a-f _v- Trip. V " _̂ _ . ^S. 

onM 3 c 1 ai* i v; 3 px° c?s — f < —' ^ 
<+t> 

i »> ^__ , 2 £ _ lz2!> - 2£ 
m m e z— av^ mpi* ^—- 3R: 

c?< ̂  f ^ ^ >( ^ / ^ 

-f 4-P 

(F.19) 
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Collecting together Equations (F.ll), (F.12), (F.13), (F.14), 

(F.15), (F.16), (F.17), and (F.19), the following expression 

for the transformation of the nuclear kinetic energy is 

obtained 

1 v> 

n 

Kz.1 

±Ll 
2 % 

X 

a 

"L 
bJ 

Mi 
3 

c<~} 

+ 
N 

M, 1 

N 
_ 2r_ V " ^ 

n 

m /L 
p>--i 

f ^ O 

~s> 

•I ̂  K ̂  | 
J/tcf-p 

n n ttk 00, 

.1. 

^>F, 
k i i 
K + £> 

+ i c " 
-w 

(F.20) 

Now adding the nuclear and electronic kinetic energies given 

by Equations (F.20) and (F. 6), the total kinetic energy in 

the body fixed system is obtained 

T = -JL 2L 
a M 3 c' 

•K 
/V 

±1 
a 

_ V (_i_ 
a ™ 

. I 

\ 
M 0 

N 

r I 3 v. 

22L 

"X L—i 

fyi 9 V-P 

-tf- T ( . 
a. 

M, 

i. 
ri 

K - J 

K3pp 

t> x 
t 

-~W 

4-
1> 1 _h 

tikztP 
(F.21) 
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Thus the total kinetic energy in the body fixed coordinate 

system can be expressed as 

T _ T _ +- "Te + 
O o 

I (F.22) 

where 

T ^ -±Z" 2 L 
T e (F .23) 

/V* 

is the kinetic energy for the center of mass motion, 

Kl ^ 
Jt O J.*-T t , - i i u u w ± , ^ 

^ r* pr\o ) L-> -xy0^ DMcL—-* IXf* (F.24) 
a I? ^ 

is the electronic kinetic energy and, 

T " - -±£ f ~ p — - £ y . 
" ^ Z_-Ayyi„. Wo / jD'1 3W0Z-> U Vn* 3 P ^ 3W,Z-« 

is the nuclear kinetic energy. 

*%; - (p. 25) 

3. Transformation of Potential Energy® 

It is shown that the interelectronic potential energy 

is invariant but other potential energies change their form 

•f""h 

because the p _ nuclei in the body fixed system is expressed 

in terms of other nuclei. The potential energy is given 

by 

V - V V^g_ -V- Vy^y, 

(F.26) 
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In the space fixed system 

Vee - 1 ^ ^ 
2. /-—t ( u- y | (F.27) 

e<£r/9= I 1 [ 

Making the transformation to the body fixed system, 

- Tri — — T"7 "Tit, — Yfc — J — T " otil, P 
^ ^ [Y)o L—1 m 2_1 K£|c 3 

H= i ' K—' 
(F.28) 

o r 

= I V ~ IfM • (F.29) 

The interelectronic potential is therefore 

v;,.vee = ± rr^~, = 4-f—^—r-v.: 

(F.30) 

Thus electronic potential energy does not change form. 

The nuclear electronic-potential energy is 

v * e - _ i y y -zr e 

% h t i Ei -

It can be seen that for 

£L SL __ % 
~~ ' (F.31) 

r- =• - V«° - J - >.->%?, •, 
(Vĵ  Z— ^ /_J 

(F.32) 
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\ - v« = l e ° - Yi°i , p 
\ /w ^ \ 1 rt" ^ I (F.33) 

For •* - !? we get 

R P - r* 
«nr ' AV 

r* 
_L J-7 or»A Rk 
Trio *•—1 ^ 

r X - i 
K + f 

I1* -f IT t Cje 

Kr/ 

=- HP - ^ (F. 34) 

which gives 

\ ' l * ~ 5 1 = \ 5 ? - 5*1 • (F. 35) 

Therefore, for all distances 

r* - p, | •= \ r„ - R;'l 
W 1 I /v- ^ 1 

so one obtains 

v. Y\£, 

N n 

EX e 
7. 

£*< ~ / 1 : K ~ R; 

(F.36) 

N 

V - z.- c 
/V 

^ L—. Z — i y ° Q° 

• cK-i c-/ I - K, 

i? ^ 3-e. 
o c 

C< ~ } 

<-> p 

V* _ R 

or when expressed in the body fixed frame 

V 0 I "Z-; e 
V^e — h I * - 1 

o(̂ , / 1 — ' » <W -V̂  

r z P e 
2 

c<zli — "1 7^ i P Kif 
KtP 

(F. 37) 
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Thus the nuclear-electronic potential energy has a different 

form in the body fixed and the space fixed references. 

Finally consider the nuclear potential energy 

r\ 
\l - — y Z,- ~Z: e1" (P.38) 

A - *J\ 

0 

For * , ^ IP / the displacement between nuclei is 

& - ^ ^ -+A- X - ^ - i Z 
~ (F.39) 

and so the distance is 

VP*- - fci \ = \ - S 5 \ £° v a • '•) ^ 
(F.40) 

When X — \> , 4 V ^ e displacement is 

R" a: = - \ 
00 

:P ' £5 = y fC - Sj -h-lr > 000 * Rvc 
yr\_ /.—> /y\ » 
P *=< K = > 

(F.41) 

and so the distance is 

\ t f - S i I - \*J-H 

(F.42) 
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The nuclear potential energy now becomes 

V,. =, ± Y ^ is ^ 
>*S-X 1 £ - - £ > ! 

L -
— ^ £ 2- Z, g (- J- V ^ Z; e ' 

f*I=. | £ T - £-f V A 1 | R f - g i | 
•SJ+J* jf f 

or when expressed in the body fixed frame 

v j •= ±y i ^ i _ e L i yztiu—C 
L ± r " 

i. U p U f L -"T « rx r *-• 
H p 

(F.43) 

The total potential energy V thus is the same in the space 

and body fixed references, but does not have the same form. 

The Hamiltonian in the body fixed system thus becomes 

H C c , r,° , - . • , V " . p_;., , Bp'*, , - .. ) 

= T t + V + T„» + V.1 -t v i + V,; . 

(F.44) 



APPENDIX G 

SEPARATION OF ELECTRONIC AND NUCLEAR 

EQUATIONS IN BOA 

From Equation (5.25) 

rTeDtr°) + Ty?CE0) + V°] ice. ^on - E* &°e ^ • 
(G.l) 

Dividing by $oe <§on , gives 

' T°tg°)E§e(£'> S°) ^ o n U ' ) 7 + V ° = E „ 
4 

^ o e (G.2) 

which reduces to 

_ L T°(x:°)$Mcr, r;+_!_ 

V " — £o . (G.3) 

The nuclear kinetic energy is 

7; = - v f j n _ i l _ ± 1 y J L . 2 
^ <YV-\. /V\ ̂  _ A n 1 ^ j~z-yr»K jrrt 35?k sr; ' 

(G.4) 
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In the BOA the nuclear coordinates in the electronic wave 

function $> are assumed to be slowly varying as compared to 
o 

the electronic coordinates, and therefore can be assumed to 

be fixed. Thus the nuclear kinetic energy does not operate 

on $ and 
oe 

n o §.±m\ 4 j r , r ) T / c r ) ^ C R 6 ) . 
n o t . 

(G.5) 

Equation (G.3) now reduces to-

Te° T„° + K -v v»° - E.. . 
r -j-

(G.6) 
"Ot 

The electronic equation can be separated to give 

(t.'+ ve; $„« 

(G.7) 

where E Q e is the electronic energy which is the separation 

"constant." 

The nuclear equation is then obtained from Equations 

(G.3) and (G.7) 

( X + v.* + E.\ •) &.J- V ) = E= ^ 1 • (Q.8) 



APPENDIX H 

THE VIRIAL THEOREM FOR WAVE FUNCTIONS IN BOA 

The virial theorem is derived here from a wave function 

in the BOA. 

1. Virial Theorem For The Electronic Equation 

The electronic equation in the body fixed system is 

H e I c e U ' f ) = <6„et t \ . 

(H.l) 

The time dependence of a stationary state wave function 

can be expressed as 

t t v : ' , «',*•) = e . { H - 2 ) 

N & 
The expectation value of the operator ^ with respect 

* f - - x 

to the wave function £ ,i) is 

<• f < 5 * • £ ) > = H c' 3t' c r ' - V ) 

W--i 

" z £"• 

{ \ C^YJ#.* W, &.'•*) 4 t c 

= S [d%r° eS ^ C *',£') £ & * , (V) e 4 , C * 4 „ W ; ? 
\ J - * r ( 

cT'l* &*,< <L/X-'.RVJf' 
a ^ - ( R 3 ) 
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Differentiating with respect to t, the Equation (H.3) yields 

y - dW-°[ ^ 

*i-=f 

- 4?«« ( Z £°< j5/ ) E.0e f 4« t r
c , r ) ^ 

(H.4) 

For the stationary state of the function ^ the equa-

tion of motion (H.l) can be used in the Equation (H.4) to 

get 

o = 4 J / x T H r i j ( £ 4 o e 
Hit ' 

- < £ . « c r r / . f / ) H ; ^ , ] ? 
Az < ) 

\\d^r° U * . e T ' 

K) 
.-I 

= £ j d * V ( S ^ ( d 3 * °f.« <$»« V 

(H.5) 

where the hermitian property of the Hamiltonian is used. 

. 0 
The Hamiltonian He in the body fixed system is given by 

h < = V + V ( H . 6 ) 
where the kinetic energy is 
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T, f-L+-±-
q V yy\ /V)e y 

^ a 

1 V 0 
«•=/ 'Iff 

1\ 

5 
Z ^ Y« it Va 

(H. 7) 

and the potential energy is 

V'/ r \4« + V„e 

(H. 8) 

In order to operate Hi on 2l ;& 'jr1 ̂  consider each term in 

separately. The first term is 

hJ 

««, v ̂  y <, 2_ L Wr | 
{ Z(V- p/) i..J 

ts 

0< -
^ V 

•*- - z 
v/ . -a 3 

* Hit ^r; ->V 

N 

4^-k r ^ 
- Z . -v f-—' i y° 

C*f — r °< 

N 
-+ h y-

V —-

Tl O 
^ • -2- '3 

2 v' *- a v H J -o € 

(V 

^ [2 
I Ol- | 

V~L, 
fs/ 

o(= I "i V"~ « z ; *'• ^ 
> •}: 

$ X 13 z* 
® e_ 

(H.9) 

Now consider the second term 
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AJ 

r z y - $ ] s * . 

y ja_ . V 3 - + j • 
Z-x - ) r j L -s r p • 

r ; . j» •j 

^ t ' I p ~-<r~> 

& j. o-e 

3. 
i>-rf 

N K/ 

+ Z X ^ v ^ 
i % r y 3 _ 

V L ^ •>£«; ^-Tp ^ ^ ~ ">VpT ^y/J^oe 

(H.10) 

From Equations (H.9) and (H.10), we obtain 

N 

1 

H 1 t 

M * [ Z S ' - f . - l i oe 

v-f i ^ m -t-mj L £l, — , ^ + /_ J — t •rV..J — 1 "5 Y"» 
Z< 

J V ?vv 

2fne •>& ^ 
A-i - 3 ^ •] 

+ VeI27 ^ 
H»» ^ v. J 

Applying y^*, to ^ O 

*e 
(H.11) 

the following is obtained 
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I 

•fc c r ^ Q ^ l + ± Y° 

•? il -zr L t"° } L* -* 

n N ^ 
" "5. ^ 

rj| ̂  I ̂  "tL 1 ^ y*A ^ V* ̂  

/v/ 
j/L ^ y ̂  ^ "3 ^ ™i 
• h- / -*- V/ ' • ft • -—- / 

aX^" * }> > ^ ' J 

Of = ' ^ 

(H.12) 

Combining Equations (H.ll) and (H.12) the Equation (H.5) 

gives, 

,3"„. r *• r j. "2. r ! . | v ^ 
»' ' B *— v ® X 

n— 

am* Jffi*, s~"" 3£P ~ "> X"° J > 

f d ^ x - i . * * « r ' , ' ( H- 1 3 ) 

which gives the result 

» - - 5 < r ( * > - f < ? ' , - s V 
=> X"' ' (H-14> 

The virial theorem follows for the electronic equation 

in BOA. For the interelectronic Coulomb potential 

- ^ r . . 

(H.15) 
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As shown in Appendix A 

y 1 V„*. ^ -vc'e , (H.16) 
Z—1 1 r*D 

<* - , ~~ 

and the virial theorem for the electronic motion becomes 

N rs s \t ° , 

< le>~- V u x ~ • -J^rr / (H. 17) 
{* c J i* - 1 ^ 

2. Virial Theorem For The Nuclear Equation 

Proceeding as in the electronic case one obtains from 

*"* - a p 0 

the time derivative of <( K* ' K' y 9 
>* 2 > 
x> 

o = $ n:rt £-r- - p ; J ^ 
• <*. t 

$ e 5 . „ r ' 

I X } > - L > 
•"4 P 

U a , " " ' V $.* $ - » f ( h- 1 8 ) 

where the nuclear hamiltonian is 

v C = - C _ v V ; (H.19) 

y\ 

When in Equation (H.18) H n and
 a r© 

operated it follows that ' * ** 
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U"*'"}°£.* r' , 
which gives the virial theorem for the nuclear motion 

(H.20) 

< T„# > 
X y < ?- • -——-7 > 

Z_^ A "3 0." X 

/ zi <4 P 
(H.21) 

Expressing the potential energy as 

V* =• Vv„ -+ £oe j 

Equation (H.21) becomes 

< > - i fr v ~ jo? a ~ ? es 
/ — f ' v x i 

(H.22) 

'fp t^r 

(H.23) 

Since V̂ °h is a Coulomb potential given in Equation (5.17) 

Vs 

\ c - i 
"31 
y y 7* "Z* € 

2L • 
\ ~Z. p ^ j ^ 

£ | £ t + J L £•»•>*£* 
i 4. p 1 ̂  

(H.24) 

its derivative with respect to for i 4 p is 
A ^ - A * 
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p ; -
 r^k 

^ f?V 
•a r P / • ( 6/ - B.< ) Z.i £.1 < 

'=' \<i£ - r; i 

n 

4-
r ' -

P< • (. R* - Cl ) z , Zo: e 
X. 

t = ' 

^ i A f jp |E* - £/| 

vv>. 
K + p 

K,° -t J- ( Z R k ) 
^ Mh V *: w / 

r KtP 

T\ 

- I 
X-i 

When summed over all 

K4P 
yn 

Ra + -L- f ^ %* 
rK *ti 

k*p (H.25) 

i , ĵ fc> Equation (H.25) reduces to 
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v\ 
y p ; . ̂ Vv,;. 
L r •=f 

V\ 
X £ £-•• ( S - - £ / ) ^ ~ l x e -

^ C ' ( P 
* 4 P 

R i R-t0 

+-J *; .(*/ i-c ) 2, «*" 

,>*=. I £*° ~ f3' | 

+ f r ^ L R; .(i X £ / ) + ftj. £c 
T , „ L -Yh, »» VL ' \n» '-I * *> 

*=< *+r 

•*- %/ • C irp ) -h £ / ] ~Z * e x 

K^p 

t ii^(i-,i->!->i'3J 

+ 2 T [ ^ • B-; + ^ 7 & • ^ i r * -*° ̂  i ^ 

p ft/ X f ^ Wy> V TV\ K- s O 

(H.26) 

The terms in the Equation (H.26) can be rearranged by writing 

out the double summations in terms of a single summation to 

obtain, 



9 9 

Ox 

X 

<it> 
K. ^ 

G 

\A^ 

^ 9 . 

T\ i . 

- L 7 " ^ £ e g 

* * U | R j - R / 1 

<\\ 

+ r ~?L\ ~?Lp £ 

* R a 
• ^ 

7ti l « . * I 
r ^ p 

1 3 

+ 

p 2-

, ^ c , . , ^ 
P L / " f * ' yvn, 

fc-l 

& 
<C=tP 

+ £ - ? • C 

Y*Y 

J - z £ » ' M 
k + P > J 

- U 

i > * - ^ c J ? 

+ ' T U l f ? / 

>4; w m P 

P; e l 

Z [ l l j l t _ £ j 

< : ' ( * K ( ' + 4 ( e ^ i « ) | 

^ *-i p 1 

. ] 

7 u t - l ^ u i • ( 
4 £ * 4 L^ [ | ; w i > 7 

— 

Z. 

4 - - L . y * K £ * -

M p 

°K\ 1 -

- i ? l * J ± i 

* j s M I R / - W I 
VV - ' 

1x Zp -e P . 
. X 

V + • ) l 

* \ 

+ z I *%& ?&***"- + ^ & * ( ± . 

" I & • - - z ^ ' A * ' = ' u ^ v k ^ l 3 

* • *->p 

+ 

K ' * p [ ( V 4 - - * -
I - m p £ ^ f — 

fcP | r ^ e * ° ) ^ ^ R-tr 1 ^ 1 
£lf P ~ - 1 

( H . 2 7 ) 
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When terms in the Equation (H.27) can be combined, Equation 

(H.27) becomes, 

y 
4 - & 2 ft 

I ~ f 

- -i T Z i L i l t - y Z;Z P e1 [ & + & ) ] 
a / j | p/- R;I ^ , M P 

I"* 1
 \-i n° . , ( •£- o° A i 

i,i4 P —A -rŵ  V 2~ ) J 
*4l> 

0 
v.. 

(H.28) 

Thus for a Coulomb potential the virial theorem for the 

nuclear equation becomes 

< -*> = - x <r O + J. T < *: • > 
v f- "• 5?,' / 

I i. | /<•*• 

if? 

(H.29) 



APPENDIX I 

RELATION BETWEEN THE VIRIAL THEOREM IN BOA AND 

THE WHOLE MOLECULE IN BODY FIXED SYSTEM 

The virial theorem in nuclear and electronic equations 

is expressed in terms of the total wave function. 

1. Virial Theorem With Respect To The Total Wave 
Function For Nuclear Equation 

From the expression in Equation (7.24) can be written 

f d ' V < V > <£>„t <£oe 

f d 3 c r £ 4 

p 3 £ d 3 v c ; c c ) 4 * ( r , r ) • 

F I dZ(y)'°D r * r> n r f * 

0 Y ' ^ o e 

\ / v c ; $ee ̂  

(i.D 
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Assuming that the nuclear coordinates in the function <£0€( 

are slowly varying, and can be considered as fixed parameter 

with respect to the variable of integration R" 
J 

Equation (1.1) becomes 

i . : } 

f I d %c ^ 4 o e ?-l 

= \ Tdsc cl3x° i j iZ T„° <gok,^ 

5 f^V o , ^ - 0 ijf- _ * r r r r o ~ ) 
t Jd i d r a J3* 4el 4ce See &>v, ] 

- ^ T 0 V 

(1.2) 

where^ y is the expectation value with respect to the total 

wave function. Similarly it can be shown that 

<"*v» > £.T } 

?/d*£ d 3 N r $« i,T f 

- J f ^ V ^ I ! 0 l ' , € e 

} j < 4 / , • /<•£>. ^ 4 * ^ 4 # T 4,e £ o ^ - ' 

- - 4 < v - > , 

(1.3) 
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Since the nuclear coordinates in are assumed to be 

fixed parameters, the Equation (1.3) can be written as. 

/ V &T . \ 

•tP 

j <.*- v* ** c c *.« e - ? 
" V ~ i? •»¥- > 

and so 

(1.4) 

r *• /=r, 

<, j d 3 i $ * < | R / - % > M ^ f d ~ 
* * r 4 k> ^ 

} J A d» \ £ <£.: ( J Rj • ̂  "j C , f „ 4 ^ 

P ^ 

1 R* i0* if€ io*n ^ o e <£ov^ 

= £ < £ - ^ \ . 
nr ' d.5) 
tf:f> ~ 

From Equation (1.2), (1.3) and (1.5), the nuclear virial 

theorem in terms of the total wave function is 

< T „ * > - _j. < K ; > -f -l f- < fh° • \ 
o a x D ^ x - 2R-° } 

r—f '** ' 
i ~( 
~4r* 

(1.6) 
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2. The Virial Theorem In Terms Of 
The Total Wave Function For 

Electronic Equation 

The expectation value of the electronic kinetic energy 

is 

c r e ' > =, I j 

\ f i . * d - 7 ) 

Equation (1.7) can be expressed by 

4 * t < T e » > 

$ d'lC'""l>g° 4 0* £,* i t l £ a n ] ' 

3 ^ J d 3 £ t ) W y ' ( . , * ( X ° , ± ° ) Te'.iel'-",?:)} 

^O T ^ 0 " ^ 

? J" A i * 4,Z if. £/e ^ f ' 

= * J C i T t f c r f ^ 4 n ? 

•? ( V c d a V ^ C " V i/T <E* £„t 4.-, <f.. 

= ^ T / > . (1.8) 

IN 

Similarly the expectation value of the ^ W can be 

^tr ^ V 
expressed as "" 

$ K i . d M " " V 4„*t < £ r/- #.V, ̂  

$ ftPs ^ - " r $.« a.* ^ 

-57 4 V/ « "^Ve, V 
~ ~ / e (1.9) 

oc - i ^ 
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For a Coulomb potential it is shown in the Appendix A that 

ve; = Jl • £ -= ± T 
-i rrl , i „ o „. • l r*. 

j ^ I & - M 

- Vee » 

and therefore 

^ ^ v,
 0 o 

7^ . Y* . ^ _ — V« «_ 
£ > _ ,y. O 

* Xf 

The virial theorem in the electronic coordinate for a Coulomb 

potential reduces to 

hJ 

<r e'>„ = - i <v e;> 6 + ^ 7 < $ * • ^ \ 
iTi ^ 

(I.10) 

Adding Equations (1.6) and (I.10) the following is obtained 

< r„°>a +. < r t'y o = ^ < * . „ > , 

J- £ < V/. SVrt 
£ n*. v ~~ ^ 

c* - • ^Y> ro 

^ rr. • (i.ID 
*P 

Since in the ground state the center of mass energy is zero, 

it follows that 
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^ )tf ~ 
(1.12) 

° , 

and so 

<? T „ ' > . + <r,*>. = <T'yo 
(1.13) 

where T is the total kinetic energy of the system. Equation 

(I.11) becomes 

f i T < Y" C- \ 4 i ^ \ 

>$r 
(1.14) 

which will be shown to reduce to the virial theorem. The 

<5 

gradient of \J with respect to the electronic coordinates 

is 
N *v> 

• r - 4 r 7 

— I Z r«'- ( V - K ) ̂  g' 

'r,V | s>° - rJ [ 3 

I ( y^° i — ^7 ">v\ ̂  R J7 

L (Vj. • 1 i* + -P ) 

I & " + 2 . ™ * K \ 3 (1.15) 
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Equation (1.15) gives 

N 

z 
cv ; ~ "3 rq° -±z±[&'- &-sn* ^ i 

f Lr— — J 
! =" I v - &: i 

N 

c * ' + -k t 

° % <=: 

cv - t 
n 

] 

(1.16) 

Also the gradient of Vth with respect to the nuclear coordinates 

iv * -5 n 
*3 l - _ L ^ Z Z , e I y- z„ e* 

IS 
3R, UK 

K/ yi 
- [ - J - z z - i i . 

; L * I 

{ -zf p I >v 

It* ^ ^=1 1£ V ir *Z.YV1,C 

» Aa > V l L < — 

•] 

= - i f IX* - & ° ̂  "Z-i 

1 

<*Zi 
N 2 

I >T ° - R^° I | 

a ° fy e -L 2 *** 1 "Z* e^-
Om; » (2> + >** £jr - / (1.17) 

Therefore vv + _L 
Vw £*_ ̂ X-
l» K̂ p 

a It' I 3 

^ Vwe R 

r =.( 
"i fp 1 9J 

J_ 
3L 

N 

i Z 
ê Cl 

t f s-8 • c - & ' ) e 

( E ->»; £ - 0 • C ~«° + ^ ^ 
^ } 21 _ 

-J— "T w * 1 * i 2, 

(1.18) 
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Adding (1.17) and {1.18) to obtain 

" - n 

JZ >•/. ^ r;. _ _ v " 
L -W rv V o 1 ^ r-v fN «» V\1^ » 

~ (1.19) 

Thus Equation (1.14) reduces to the virial theorem 

< -r> = - x < v,;) - 1 < v €; > _ L <v„;\ 
a 3 (1.20) 

or 

< T > = -JL < v > 
(1.21) 



APPENDIX J 

VIRIAL THEOREM IN BOA FROM A TRIAL FUNCTION 

1. Virial Theorem for Electronic Equation 

The expectation value of the electronic Hamiltonian 

with respect to a scaled function given in the Equation 

(7.6) gives 

^ f ^ . 

hx,'-- • v BP-, v e i < 

Hi ^ e ( V - • • In 

(J.l) 

Making the transformation 

o .~ I 
°1« Xj ^ - i - - r>J , 

one gets 
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" 1_ - N 
C-fi-fi + u _ V - t " 1 . 1 . 1 .-l 

» °'^7, ^1' 
, Va til. ... ^ c °i r', % ( Q ? 

"i< " V > 

d 3 V Rs)a-14(«ir, i a ° ) f ' 

(J.2) 

The Equation (7.7) now can be expressed as 

N 
0 = 2 ; 

^ 'o) i 

<x 
N 

_ ̂  f aJ1 v' ̂  * f r', l B <') [ 2 Te °+ Z. "1. 5̂k!' }tE41X' X £1°) } 

'I ^ ^ f d 3 V ^ 

H«° ^ f d ' x ' ^ d ' P . f ' 

+ f r d3Wr a & r ̂  

^ J d 3 v 2 - °V ^ f 
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Following the derivation in Appendix D it. can be shown that 

^ 0 % = a . 

W (J.4) 

Thus Equation (J.3) becomes 

e ^ S I ' % * [ a V * " A T ] flifc ? 

^ 3tl- J r 

y [ ^ r1 . 

U ' S ^ Z . . 

{ d 3 N r ' f c
> a ^ < 

O = a < Te° f 

"7 , J ^ 1 

• (J.5) 

For Vfc - V€c V n £ the derivative is 

Z 1 1 - + 2 *u ^ -
v ot 

(J.6) 

For the electronic Coulomb potential given by Equation (5.15) 

N 
v I \ •p ~i-
ve -e ~ — > c 

^ Z-j 
1 - S l - Tf 

(J.7) 



So the derivative is 

- J. *5 
«°l. a -5 

"I 
z : 

-e 

rJ 

T. 

/ H <* X 

t i y % L • ( 
Z r m t 

^4« •el 
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< - w 
% 

> 
- T e 

% 

(J.8) 
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e 
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Y * ' 13 

^ "1. 

(J.9) 
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Interchanging od—-=*? ft and c< in the second term, 

the Equation (j.9) gives 

N 

Z "i-
^v, e £ 

cXcl ' 1 c 
- 3t 

N i • y~ 1 

l t ~ r« . 
Z , 

cx+ft-l 
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° U % > 
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It I3 

")<>' i p! 

M I „ I 

. i y~ ]&. f It. &. A 
T a Z_. ^ 1 ^ ( 

<*+p.=i 

Nf 

- I T 

2 L & . 

V "L 

^ rjr p> " ( | 
1 ~ 

V, 

0 

fee 

H ! 

H p 

(J.10) 
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and 

For a general electronic potential the derivative is 

V? - * r> <\ \i" f ... ) 
C71 ^>Vee _ ~L ° v "1. 1̂0 / 

^ >' \ 
*=i I -sr J 

* (J.ll) 

* „, . p
 n , ~\\/ ' f **' Q°\ 

^ ~ T" x* . ^ ( % * " ^in ' ) 

*=• ^ irj - - --' - ' 
^ \ °i * J 

(J.12) 

where Vw^ is the nuclear electronic potential energy. 

Substituting in Equation (J.5) from (J.ll) and (J.12) 

the virial theorem follows 

< >n - 4 ±<
x*'- <X-e- ̂  \ 
V '1 * T v A j 

(J. 15) 

For a Coulomb potential it is 

/ X ° > - - 1 < \ , 1 2 \ 
V ' V ^ v 1 + * ^T, * V I 

(J .16) 
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2• Virial Theorem For Nuclear Equation 

For a scaled function the energy in Equation (7.14) is 

- V . ^ 
* 

V..-- - % y* 
w J - v , " ^ R » ) 

i-C ft 

d 3 C""'V' C - - ^ 

V * u,s:... , e^,... x ^ : ) 

Hi £V>+| ''' ̂  
-\ 

For I, R, 

(J.17) 

R ' a — H , H-l ^ y 

(J.18) 

the Equation (J.18) reduces to 
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e m - \ 
^ 2 - £ I I* -L )"\t ^ 

hz-\ 

H\> 
V\ 

£ - Z " U % 
= f 

*»-* 4= P 

1> 

ft <& U , 
• ̂ h ! H V ! h ---^v,£H 

? K " i ' * , * v ' 

(J.19) 

The Equation (J-19) gives on differentiation 

3E 

¥? 
> 1 

j j d ^ ' R 1 £ „ * [ > x % 2 i •%, w i * ? 

r̂ / ^ ® f 

$ f d ^ ' V s P / ^ | 

14'' 

(J.20) 

where 

Z ^ ^ 
i z \ 

T 
" X 

"i? r / 
(J.21) 

and 
Y\ 

z * 
i -t 1'#»> 

c) £•« 
• 

v\ 
r; ^ £ < 

i> p j 
(J.22) 



116 

Thus the virial theorem 

<: - V > , = ± T <9:. ^ L \ 
I w > 

rv S 

V 
+ x y y R ; , \ 

* N ~ -JRi* /, 
i - I "v* 7 

. rfp (J.23) 

is obtained. 

For a Coulomb potential it is shown in the Equation 

(E28) of Appendix H that 

y p.*. - - v . ; , 
- (J. 24) 

f x f 
ifp 

so the Equation (J.24) becomes 

( v > ^ - -i < v v; > 

^ I 

V\ 

+• i 7 / R ; . \ . 
A TIT ~ 1 V r+p 

(J.25) 
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